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Effective degrees of freedom in genetic algorithms
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An evolution equation for a population of strings evolving under the genetic operators, selection, mutation,
and crossover, is derived. The corresponding equation describing the evolution of schemata is found by
performing an exact coarse graining of this equation. In particular, exact expressions for schema reconstruction
are derived that allow for a critical appraisal of the ‘‘building-block hypothesis’’ of genetic algorithms. A
further coarse graining is made by considering the contribution of all length-l schemata to the evolution of
population observables such as fitness growth. As a test function for investigating the emergence of structure
in the evolution, the increase per generation of thein-schemata fitnessaveraged over all schemata of lengthl ,
D l , is introduced. In finding solutions to the evolution equations we concentrate more on the effects of
crossover; in particular, we consider crossover in the context of KauffmanNk models withk50,2. For k
50, with a random initial population, in the first step of evolution the contribution from schema reconstruction
is equal to that of schema destruction leading to a scale invariant situation where the contribution to fitness of
schemata of sizel is independent ofl . This balance is broken in the next step of evolution, leading to a
situation where schemata that are either much larger or much smaller than half the string size dominate those
with l'N/2. The balance between block destruction and reconstruction is also broken in ak.0 landscape. It
is conjectured that the effective degrees of freedom for such landscapes arelandscape connective treesthat
break down into effectively fit smaller blocks, and not the blocks themselves. Numerical simulations confirm
this ‘‘connective tree hypothesis’’ by showing that correlations drop off with connective distance and not with
intrachromosomal distance.@S1063-651X~98!10002-8#

PACS number~s!: 87.10.1e, 02.50.2r, 05.50.1q
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I. INTRODUCTION

One of the most important steps in developing a qual
tive or quantitative model of a system is to gain an und
standing of the nature of its effective degrees of freed
~EDOF!. An important feature that distinguishes them is th
their mutual interactions are not very strong; that is to s
they must have a certain degree of integrity. In this sense
aim of developing an effective model of a system is to arr
at a description of the system in terms ofrelevant ~e.g.,
‘‘macroscopic’’! variables.

Identifying the correct EDOF in complex systems is ge
erally speaking a very difficult task. To begin with, mo
often than not they are scale dependent, where what
means by ‘‘scale’’ depends on the particular problem un
consideration. In the case of evolution theory and gen
algorithms~GAs!, one expects to find different EDOF at di
ferent time scales. Generically if a system is complex at
relevant scale then it will admit a simple effective dynam
only in terms of complex degrees of freedom: one trades
complicated dynamics that results from the nonlinear in
actions of the many ‘‘elementary’’ degrees of freedom
the simpler dynamics of more complicated EDOF. What o
gains in the trade is effective predictability; what one lose
detail.

It is well worth recalling in this context the example o
spin glass models of neural networks@1–3#. In this case the
EDOF are the overlaps with a certain number of ‘‘patterns
each of which is related to a local extremum of the ene
landscape or Hamiltonian. Since a large number of unco
lated patterns is involved in this effective representation
571063-651X/98/57~3!/3251~14!/$15.00
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should be clear that the description of the EDOF themse
requires a large amount of information: One gets a meas
of the complexity of the system by the information in i
EDOF. Note that in this example the system’s dynamics
guided by large-scale attracting structures~the patterns!, the
EDOF ~overlaps! being the instruments that measure ho
structure emerges as the system condenses from a disor
phase. Some other examples of structured complex sys
include the brain, gene expression in eukaryotic cells@4#, and
of course evolution theory and GAs, among many others.
know that these systems arestructuredbecause their behav
ior is manifestly nonrandom; for instance, neural dynam
must be structured if the brain is to be of any use. Yet
most cases we have no idea what the nature of this struc
is, much less how to identify EDOF.

In this paper we will begin to analyze the notion of EDO
in the context of GAs@5,6#. We emphasize, however, tha
GAs form only one area of interest where the results a
conclusions of this paper are applicable, some others b
statistical mechanics@7#, biology @4#, the Kauffman Nk
model @8#, and evolution theory@9#.

Trying to ascertain what EDOF a GA is using in order
arrive at an optimal solution is in the strict sense a nons
sical question—roughly equivalent to asking ‘‘what are t
EDOF of a block of material?’’ Of course, the answer d
pends on the type of material under consideration and
state. However, it isnot nonsensical to think of what are th
EDOF in a generic type of fitness landscape. The fitn
landscapes we choose to consider as being representati
general classes of fitness landscapes are Kauffman’sNk
models withk50 andk52.
3251 © 1998 The American Physical Society
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As in the example of spin glasses, the dynamics of G
can be viewed as a condensation process in a rugged
scape. So again one expects the EDOF to represent the e
gence of certain structures, or ‘‘patterns,’’ which are rela
to local fitness optima. In GA theory one usually consid
partly specified patterns, called ‘‘schemata,’’ and determi
the fraction of all the individuals in the population that i
clude a particular schema, this being a measure of o
comparable to the ‘‘overlap’’ of spin glass models. Since o
does not knowa priori which schemata lead to a useful set
EDOF, some hypothesis must be made to this effect.
standard conjecture about the EDOF of GAs is the ‘‘buildi
block hypothesis’’@5,6#, the essence of which is that a G
arrives at an optimal solution of a complex problem via t
combination ofshort, fit schemata. In this paper we wi
present both analytic and numerical evidence that generic
this is not the case. The argument for the block hypothes
that large schemata are likely to be ‘‘broken’’ by the cros
over operator. However, this argument neglects the poss
ity that a schema be reconstructed via parents that conta
constituent parts.

It is clear that the validity of the block hypothesis w
depend on the nature of the fitness landscape. If there
larger contribution to fitness from widely separated str
bits, large schemata will be favored irrespective of the eff
of crossover. On the contrary, if the landscape strongly
vors smaller schemata, this would lend support to the bl
hypothesis. However, the intuition behind the block hypo
esis is firmly based on the action of crossover not on
pathologies of particular landscapes. It is for this reason
we choose to consider the block hypothesis in the contex
Kauffman Nk models. We will always assume that the fi
ness landscape is generic in the sense that there is no
tematic bias in the fitness function that would favor one p
of the string over another.

The format of the paper will be as follows. In Sec. II,
this paper is not intended for a dedicated GA audience,
will give a brief overview of various elements of GA theor
In Sec. III we will derive an evolution equation for the d
velopment of a population of strings under the genetic
erators of selection, mutation, and simple crossover. We t
‘‘coarse grain’’ this equation to derive an effective evolutio
equation for the evolution of schemata of sizel and order
N2 . In Sec. IV we consider a further coarse graining, co
sidering the effects of schemata of sizel but of any order
N2< l . We consider especially the increment in fitness
generation from such schemata showing that under gen
assumptions the coarse-grained variable is closely relate
the spatial correlation function, so it provides informati
about the size distribution of the EDOF. In Sec. V we co
sider asymptotic solutions of the coarse-grained evolu
equation near a random initial population for a simple ‘‘ne
tral’’ fitness landscape and also make some comments a
what happens near the ordered population limit. In Sec.
we consider a more nontrivial landscape withk52 where we
introduce a conjecture about the EDOF of direct-enco
GAs on anNk landscape, which we call the ‘‘connective tre
hypothesis.’’ Finally in Sec. VII we summarize our concl
sions.
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II. GENETIC ALGORITHMS AND THE BUILDING
BLOCK HYPOTHESIS

GAs have become increasingly popular in the analysis
complex search and optimization problems and in mach
learning, one of their chief attributes being their robustn
~see@10# and references therein for a recent overview!. One
begins with a complex optimization problem that depends
many variables. The variables and the rules that govern th
are subsequently coded in the form of a population of stri
~‘‘chromosomes’’!. The latter consist of a set of symbo
~‘‘alleles’’ !, each symbol taking values defined over an
phabet.

The population evolves under the action of a set of
netic operators. Reproduction can be implemented in m
different ways; all have the effect of increasing the relat
numbers of ‘‘fit’’ strings, fitness being measured by a fitne
function f : As→R1 , whereAs is the space of string states
The role of most other genetic operators is to encourage
versity in the population. We will restrict our attention t
simple crossover and mutation. The former is a type of
combination and involves the splitting of two parents,Ci ,
CjPAs , at a particular crossover pointk, and the subse-
quent juxtaposition and recombination of the left half ofCi
with the right half ofCj and the right half ofCi with the left
half of Cj , left and right being defined relative to the cros
over pointk. Crossover is one method of generating strin
that were not originally in the population of a given gene
tion, thus providing diversity. Mutation, on the other han
offers a form of insurance, in that if a particular bit is lost
is irrecoverable using only reproduction and crossover. M
tation offers a way to recover lost bits that may subseque
be important in the construction of an optimum string. Usi
the language of statistical mechanics the evolution of the
is a competition between the ‘‘ordering’’ tendency of repr
duction and the ‘‘disordering’’ effects of crossover and m
tation.

Theoretical analysis of how a GA seeks an optimum
lution has focused on the notion of schemata. For strings
N bits a schema is a subset,N2<N, of bits defining a certain
‘‘word’’ constructed from the alphabet. In theN2N2 posi-
tions not defined by the schema one does not care abou
value of the bit, and this is taken into account by use of
metasymbol, or ‘‘wild card’’,* . The essential idea behin
the notion of the schema is that the GA arrives at an o
mum solution through combining fit schemata. As ea
string is an example of;2N schemata, it is clear that a ver
large number of them are being processed simultaneousl
the GA, a phenomenon known as implicit parallelism@5#. Of
course, not all these schemata survive crossover, which l
us to consider the size of a schema,l , which is defined as
( l 5 j 2 i 11), wherei and j are the first and last of theN2
defining elements of the schema, respectively. In terms
reproduction and mutation there is no preference for sh
versus long schemata, except as might be induced by
fitness function itself. However, if one considers the effe
of crossover, purely in terms of the crossover point its
there is a higher probability of ‘‘breaking’’ a long schem
than a short one. This apparent disfavor of large schem
led to what is known as the ‘‘building block’’ hypothesis
which claims that the joint effect of reproduction and cros
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57 3253EFFECTIVE DEGREES OF FREEDOM IN GENETIC . . .
over is to favor highly fit butshort schemata that propagat
from generation to generation exponentially. It is the
highly fit, short schemata that are then considered to be
EDOF in the system, the GA building a better soluti
through combining small subsolutions.

III. STRING EVOLUTION EQUATION

In this section we will derive an equation that describ
the evolution of a GA induced by the effects of the thr
genetic operators: selection, crossover, and mutation. In
ticular, we will consider the change in the numbern(j,t) of
strings that contain a particular schemaj, of order N2 and
sizel>N2 , as a function of time~generation! in a population
of sizen.

We will first derive evolution equations for the ‘‘micro
scopic’’ degrees of freedom themselves—the strings. C
sidering first selection in the absence of mutation or cro
over, one has

P~Ci ,t11!5P8~Ci ,t !, ~1!

whereP8(Ci ,t)5@ f (Ci ,t)/ f̄ (t)#P(Ci ,t), f (Ci ,t) is the fit-
ness of stringCi at time t, P(Ci ,t)5n(Ci ,t)/n, and f̄ (t)
5( i f (Ci ,t)P(Ci ,t) is the average string fitness. In Eq.~1!
we are neglecting fluctuations in the numbersn(Ci ,t), an
approximation that becomes exact in the infinite populat
limit. The effect of reproduction is to augment the number
fit strings. However, the trouble with using selection as
sole genetic operator is that the search space for optim
restricted to that of the initial population. In complex sy
tems this number will often be small compared to the size
the total search space. This implies that finite-size effects
important.

Including the effects of mutation but not crossover giv
rise to the quasispecies model@11#, with the evolution equa-
tion

P~Ci ,t11!5P~Ci !P8~Ci ,t !1 (
CjÞCi

P~Cj→Ci !P8~Cj ,t !,

~2!

whereP(Ci)5Pk51
N @12p(k)# is the probability that stringi

remains unmutated,p(k) being the probability of mutation
of bit k, which we assume to be a constant, though the eq
tions are essentially unchanged if we also include a dep
dence on time.P(Cj→Ci) is the probability that stringj is
mutated into stringi ,

P~Cj→Ci !5 )
hP$Cj 2Ci %

p~k! )
hP$Cj 2Ci %c

@12p~k!#, ~3!

where$Cj2Ci% is the set of bits that differ betweenCj and
Ci , and$Cj2Ci%c , the complement of this set, is the set
bits that are the same. In the limit where the mutation ratp

is uniform, P(Ci)5(12p)N and P(Cj→Ci)5pdH( i , j )(1
2p)N2dH( i , j ), wheredH( i , j ) is the Hamming distance be
tween the stringsCi andCj . The behavior of the solutions t
Eq. ~2! has been much discussed in the literature~see, for
example,@7# and references therein!, although mainly in the
context of a flat fitness landscape. One of the principal f
tures of interest is the existence of an ‘‘error threshol
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separating an ‘‘ordered’’~selection dominated! phase from a
‘‘disordered’’ ~mutation dominated! phase that manifests it
self as a second order phase transition at a certain cri
mutation rate. In the case of uniform mutations, Eq.~2! can
be mapped into an equilibrium statistical mechanics prob
using transfer matrix techniques@12#, where the role of in-
verse temperature is played byb5 1

2 ln@p/(12p)#.
We will now consider the effects of crossover witho

mutation. This is a much less studied case theoretically,
one that is very important from the point of view of EDOF
since unlike mutations it is sensitive to the linear disposit
of bits along the string. Some work has been done, notabl
the context of GAs by Prughel-Bennett and Shapiro@13#,
whose method models GA evolution via a small set of m
roscopic quantities and assumes that the system entrop
maximized, and by Higgs@14# in an interesting generaliza
tion of the Eigen model to diploid models that include cros
over. Neither of the two approaches focuses on schemata
main interest of the present paper. With crossover the ev
tion equation can be written in the form

P~Ci ,t11!5P8~Ci ,t !2
pc

N21 (
CjÞCi

(
k51

N21

CCiCj

~1! ~k!

3P8~Ci ,t !P8~Cj ,t !

1
pc

N21 (
CjÞCi

(
CiÞCi

(
k51

N21

CCjCi

~2! ~k!

3P8~Cj ,t !P8~Cl ,t !, ~4!

wherepc is the probability of implementing crossover in th
first place,

CCiCj

~1! ~k!5u„dL
H~ i , j !…u„dR

H~ i , j !… ~5!

and

CCjCi

~2! ~k!5
1

2
~d„dL

H~ i , j !…d„dR
H~ i ,l !…

1d„dR
H~ i , j !…d„dL

H~ i ,l !…!, ~6!

where dR
H( i , j ) is the Hamming distance between the rig

halves of the stringsCi andCj , ‘‘right’’ being defined rela-
tive to the crossover pointk. The other quantities are define
analogously.CCiCj

(1) (k) is the probability that given thatCi

was one of the parents it is destroyed by the crossover
cess.CCjCl

(2) (k) is the probability that given that neither pare

wasCi it is created by the crossover process, so this rep
sents a gain term. It is naturally much easier to destroy
individual string by crossover than create it; henceCCjCl

(2) (k)

is a very sparse matrix.CCjCl

(2) (k) represents a contact inte

action term in Hamming space. Another important prope
of CCiCj

(1) (k) andCCjCl

(2) (k) is that they are completely popula

tion independent, depending only on string configuratio
and not string numbers.

Equation~4! is an extension of the ‘‘schema theorem,’’ o
fundamental theorem of GAs,@5,6# that states that, for a
schemaj, of size l ,
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P~j,t11!>P8~j,t !F12pcS l 21

N21D G , ~7!

to the case where the schema of interest is the entire s
~an analogous equation was derived in@15#!. The evolution
equation we have derived takes into account exactly, gi
the approximation of a large population, the effects of d
struction and reconstruction of strings.

Combining the effects of both crossover and mutati
where we assume that mutation is carried out after crosso
we have the evolution equation

P~Ci ,t11!5P~Ci !Pc~Ci ,t !1 (
CjÞCi

P~Cj→Ci !Pc~Cj ,t !,

where

Pc~Ci ,t !5P8~Ci ,t !2
pc

N21 (
CjÞCi

(
k51

N21

CCiCj

~1! ~k!

3P8~Ci ,t !P8~Cj ,t !

1
pc

N21 (
CjÞCi

(
ClÞCi

(
k51

N21

CCjCl

~2! ~k!

3P8~Cj ,t !P8~Cl ,t !. ~8!

We now turn our attention to the derivation of an evo
tion equation for schemata. Before doing this it is conveni
to return to Eq.~4! to see that the notions of schema a
coarse graining appear very naturally when considering
crossover of strings. Considering the destruction term:
matrix ~5! restricts the sum to thoseCj that differ formCi in
at least one bit both to the left and to the right of the cro
over point. One can convert the sum overCj into an unre-
stricted sum by subtracting off thoseCj that havedL

H( i , j )
50 and/ordR

H( i , j )50. Similarly one may write the recon
struction term as

pc

N21 (
k51

N21 S (
Cj

(
Cl

CCjCl

~2! ~k!P8~Cj ,t !P8~Cl ,t !

22(
Cj

CCiCj

~2! ~k!P8~Ci ,t !P8~Cj ,t !

2P8~Ci ,t !P8~Ci ,t ! D . ~9!

The second and third terms cancel with corresponding
pressions from the destruction term; hence Eq.~9! can be
written as (Cj .C

i
L(Cl.C

i
RP8(Cj ,t)P8(Cl ,t), where Ci

L is

the part ofCi to the left of the crossover point and corr
spondingly for Ci

R . However, by definition f̄ (Ci
L ,t)

5(1/nC
i
L(Cj .C

i
LP8(cj ,t), wherenC

i
L is the total number of

strings in the population that containsCi
L . As f̄ (Ci

L ,t) is the
average fitness of the substringCi

L , one can think of this
substring as a schema; likewise forCi

R . In terms of these
‘‘schemata’’ the final form of the string equation is
ng

n
-

,
er,

t

e
e

-

x-

P~Ci ,t11!5P8~Ci ,t !2
pc

N21 (
k51

N21

@P8~Ci ,t !

2P8~Ci
L ,t !P8~Ci

R ,t !#, ~10!

with P8(Ci
L ,t)5(Cj .C

i
LP8(Cj ,t), and similarly for

P8(Ci
R ,t).

One thus sees that crossover naturally introduces the
tion of coarse graining, even though we are working in ter
of the microscopic degrees of freedom—the strings. The
construction probability depends on the relative fitness
strings that contain the constituent elements ofCi , but given
that there can be many strings that containCi

L one must take
an average over these strings. In this sense we are integr
out the ‘‘degrees of freedom’’ represented by the bits that
not contained inCi

L or Ci
R . Equation~10! shows that the

effects of reconstruction will outweigh destruction if th
parts of a string are more selected than the whole.

Before deriving a schema evolution equation includi
crossover and mutation let us consider the effects of rep
duction alone. The proportion of elements of the populati
P(j,t), that containsj satisfies the evolution equation

P~j,t11!5P8~j,t !, ~11!

whereP8(j,t)5@ f̄ (j,t)/ f (t)#P(j,t),

f̄ ~j,t !5

(
Ci.j

n~j,t !

f ~Ci ,t !n~Ci ,t !

n~j,t !
, ~12!

the sum is over all stringsCi that containj, and f̄ (t)
5(j f̄ (j,t)P(j,t)/(jP(j,t) is the average fitness per strin
or per schema of the population. Note that the sum o
strings that containj is a sum over the possible values of th
bits that are not definite elements ofj, i.e., the wild cards. In
this sense, as above in Eq.~10!, ‘‘degrees of freedom’’ have
been integrated out of the problem and Eq.~11! represents an
exact coarse graining of the original string evolution equ
tion.

Considering mutation without crossover we ‘‘coar
grain’’ the microscopic equation~2! by summing over all
Ci.j. One can write an effective evolution equation f
schemata evolving under mutation

P~j,t11!5P~j!P8~j,t !1(
j i

P~j/ i→j!P8~j/ i ,t !,

~13!

where the effective coefficientsP(j) andP(j/→j) are

P~j!5)
k51

N2

@12p~k!#,

P~j/ i→j!5

(
cj .j/ i

P8~Cj ,t !P~ci→cj !

P~j/,t ! f̄ ~j/,t !
. ~14!

In the latter the sum is over stringsCj that contain the sche
mataj/ i , wherej/ i , differs in at least one bit fromj on the
N2 defining bits of the schema.

To derive an evolution equation for schemata, includi
in the effects of crossover, we return to Eq.~10! and sum
over all stringsCi.j. One finds



th
m
,

io
io

v

e

th

a

th
a
, a
th

bi
a-

rn
m
l
c
a

of

s to

pe
an
’’
o,
c-

e
or

in-
tem
s is
-

the
red.
ry
n
fo-
tive
hat
e at
me

ea-
not
rity.
do
w
pts,
ac-
f the

57 3255EFFECTIVE DEGREES OF FREEDOM IN GENETIC . . .
P~j,t11!5~12pc!P8~j,t !

1
pc

N21 (
Ci.j

(
k51

N21

P8~Ci
L ,t !P8~Ci

R ,t !.

~15!

We now break the sum over crossover points into those
cut the schema itself and those that cut outside the sche
In the reconstruction term if the cut is outside the schema
the right say, then the sum overCi

R is 1. Similarly if the cut
is to the left, the sum overCi

L is 1. The remaining sums yield
P8(j,t) and this term cancels with an analogous express
originating in the destruction term. For the reconstruct
contribution from cuts in the schema we denote byhL (hR)
the bits to the left~right! of the crossover point that arenot in
the schema and note that(Ci.j/P8(Ci

L ,t)P8(Ci
R ,t)

5(hL
(hR

P8(Ci
L ,t)P8(Ci

R ,t). We will denote byjL andjR

the parts of the schema to the left and right of the crosso
point, respectively. Now,(nL

P8(Ci
L ,t)5P8(jL ,t), where

by definitionP8(jL ,t)5@ f̄ (jL ,t)/ f̄ (t)#P(jL ,t), f̄ (jL ,t) be-
ing the average fitness of the schemajL . Analogous expres-
sions hold forjR . With these results the final form of th
schema evolution equation including crossover is

P~j,t11!5P8~j,t !2
pc

N21 (
k51

l 21

@P8~j,t !

2P8~jL ,t !P8~jR ,t !#, ~16!

where the sum is only over crossover points that cut
schema.

The interpretation of this equation is very similar to th
of Eq. ~10!. In the reconstruction termP8(jL ,t)P8(jR ,t) is
the probability that one parent is selected that contains
left part of the schema and the other contains the right p
A schema will be augmented by the effects of crossover if
in the string case, its constituent parts are selected more
the whole. Compared with Eq.~10! a further coarse graining
has been carried out by summing over all the states of
outside ofj. Combining now the effects of selection, mut
tion, and crossover the schema evolution equation is

P~j,t11!5P~j!Pc~j,t !1(
j” i

P~j” i→j!Pc~j” i ,t !,

~17!

where

Pc~j,t !5P8~j,t !2
pc

N21 (
k51

l 21

@P8~j,t !

2P8~jL ,t !P8~jR ,t !#. ~18!

This evolution equation is the fundamental equation gove
ing the evolution of schemata and is written at a ‘‘semi
icroscopic’’ level, in that it is written in terms of individua
schemata. It represents an exact coarse graining of the
responding string evolution equation after summing over
possible states of the nonschema degrees of freedom.
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Another useful concept we will introduce here is that
‘‘effective fitness,’’ f eff(j,t), which we define via the relation

P~j,t11!5
f eff~j,t !

f̄ ~ t !
P~j,t !. ~19!

Comparing with Eq.~17! one finds

f eff~j,t !5P~j!F12pcS l 21

N21D G f̄ ~j,t !

1(
j/ i
P~j/ i→j!

P8~j/ i ,t !

P~j,t !
f̄ ~j i ,t !

1pcS l 21

N21D P~j!

P~j,t !
f̄ ~ t !P8~jL ,t !P8~jR ,t !

2
pc

N21 (
j” i

P~j/ i→j! f̄ ~ t !

3 (
k51

N21 S P8~j/ i ,t !2P8~j/ i L
,t !P8~j/ i R

,t !

P~j,t !
D . ~20!

Thus we see that the effect of mutation and crossover i
‘‘renormalize’’ the ‘‘bare’’ fitness f̄ (j,t). The destructive
effects of crossover and mutation give a multiplicative-ty
renormalization while the reconstruction terms give
additive-type renormalization. In the low ‘‘temperature
limit where mutation and crossover go to zer
f eff(j,t)→ f̄(j,t). The above also leads to the idea of an effe
tive selection coefficientseff5feff(j,t)/ f̄(t)21. If we think of
seff as being approximately constant in the vicinity of tim
t0 , thenseff(t0) gives us the exponential rate of increase
decrease of growth of the schemaj at time t0 .

IV. EFFECTIVE DEGREES OF FREEDOM
AND COARSE GRAINING

As mentioned, one of the most important steps in obta
ing a qualitative and quantitative understanding of a sys
is deciding what are its relevant degrees of freedom. Thi
often difficult owing to the fact that they are ‘‘scale’’ depen
dent. In the case of evolution dynamics this implies that
effective dynamics depends on the time scale conside
Trying to understand such behavior quantitatively is ve
difficult as almost inevitably one will have to resort to a
approximation technique, which invariably depends on
cusing on the relevant EDOF, as in the methods of effec
field theory. However, if they are time dependent then w
starts as a good approximation focusing on a certain typ
one time will usually break down as one approaches ti
scales where they are qualitatively quite different.

One feature that is very common, if one has found a r
sonable set of EDOF, is that their mutual interactions are
very strong, so that they have a certain degree of integ
Calling something an EDOF is not a very useful thing to
if it is not readily identifiable as such. For instance, in lo
energy QCD, gluons and quarks are not very useful conce
as they are so strongly coupled via highly nonlinear inter
tions that they form baryons and mesons, bound states o
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former. The latter have a much higher degree of integ
than the former at such energies.

So how is the above related to the present discussio
GAs? GAs, as algorithmic representations of complex s
tems, have many degrees of freedom and therefore an e
nentially large number of possible states. For instance, in
case where the state of a string of sizeN is defined as a
binary word, for a populationn the total number of possible
states is;(2N)n in the case where strings are identifiable
a label other than the state of their bits, and;n2N in the case
where permutations of identical strings are not counted se
rately. Ideally, the search for optima proceeds in a sma
space, spanned by effective ‘‘coarse-grained’’ degrees
freedom. The traditional answer to the question, ‘‘What
the nature of these degrees of freedom?’’ is, as mentio
previously, given by the ‘‘building block hypothesis.’’

We can get some idea of the dynamical behavior of sc
mata due to crossover by restricting attention for the mom
to a flat fitness landscape. In this case, for an uncorrel
population, crossover is completely neutral and we hav
scale invariant situation. To solve the evolution equation
the case of a correlated population one needs to solve
corresponding equations forjL and jR ; these will involve
reconstruction terms that containjLL , jLR , jRL , andjRR.
The first two are the components ofjL and the latter two of
jR . Naturally this process can be iterated relating fi
grained degrees of freedom to more and more coarse gra
degrees of freedom, where more and more bits (N2N2)
have been summed over. Obviously when one arrives at
schema the process stops as one cannot split by cross
such schema. Thus crossover leads to a hierarchy of e
tions relating fine grained degrees of freedom to successi
more and more coarse grained degrees of freedom.

Restricting attention to two schemata in the flat fitne
landscape setting and considering the continuous time li
one arrives at the following differential equation:

dP~ i j ,t !

dt
52pc

l 21

N21
@P~ i j ,t !2P~ i ,t !P~ j ,t !#, ~21!

where i and j are the definite bits that define the 2 sche
and also the two 1 schemata, respectively. As one ca
split a one schemaP( i ,t) and P( j ,t) are conserved quanti
ties; thus one finds

P~ i j ,t !5P~ i j ,0!e2pc@~ l 21/N21!#t1P~ i ,0!P~ j ,0!

3~12e2pc@~ l 21!/~N21!#t!. ~22!

Thus one sees thatP( i j ,t) approaches an uncorrelated fixe
point P* ( i j )5P( i ,0)P( j ,0) exponentially rapidly. The sole
effect of the size of the schema is to govern the rate
approach to the fixed point, an exponentially small pref
ence being given to smaller schemata.

The steady state solution for a schemaj of orderN2 is

P* ~j!5)
i 51

N2

P„j~ i !,0…, ~23!

whereP„j( i ),0… is the probability of finding the one schem
corresponding to thei th bit of j at t50. One can verify that
this steady state solution also is purely a result of the effe
y
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of reconstruction. Without reconstruction there is no oth
fixed point other than zero. Thus reconstruction is the driv
force of crossover and will always come to dominate. This
very much contrary to the standard block hypothesis poin
view that treats schema destruction as the dominant eff
We can also make another interesting observation assoc
with the effective fitnessf eff(j,t) and crossover. Here th
effect of crossover is to renormalize the fitness. The effec
selection coefficient is

seff52pcS l 21

N21D1pcS l 21

N21D P~ i ,0!P~ j ,0!

P~ i j ,t !
. ~24!

Thus schema destruction gives a multiplicative renormali
tion that contributes negatively to the effective fitness adv
tage. However, schema reconstruction leads to an add
renormalization of the effective fitness that exceeds the c
tribution of the destruction term ifi and j are negatively
correlated.

In general the fitness landscape itself induces correlat
betweenjL and jR . In this case there is a competition b
tween the~anti-! correlating effect of the landscape and t
mixing effect of crossover. Selection itself more often th
not induces ananticorrelation between fit schema part
rather than a positive correlation. Indeed, in the neutral c
of a k50 landscape whend f jL

, d f jR
.0, then 11(2N2 /

N)d f j,@11(2NL /N)d f jL
#@11(2NR /N)d f jR

#. So selec-
tion induces an anticorrelation; hence in an uncorrelated
tial population, P8(j,t),P8(jL ,t)P8(jR ,t). This means
that crossover plays an important role in allowing both pa
of a successful schema to appear in the same individual

We can analyze this effect in more detail, taking on
again the case of 2 schemata. Defining the correla
C( i j ,t)[@P( i j ,t)/P( i ,t)P( j ,t)#21, then in terms of the se
lection coefficient,sj5 f̄ (j,t)/ f̄ 21, one finds

C~ i j ,t11!5S 12pc

l 21

N21D S ~11si j !

~11si !~11sj !
C~ i j ,t !

2
~sisj1si1sj !

~11si !~11sj !
D . ~25!

Note that the effect of crossover is to diminish correlatio
induced by the fitness landscape; however, crossover ca
change the sign of the correlations. The larger the valuel
in this simple case the more the correlations are damp
This is the effect that we saw previously in the context o
flat landscape. In the extreme casel 5N, pc51 the effect of
crossover is to eliminate all correlation betweeni and j . In
the neutral (k50) case,si j 5si1sj and

C~ i j ,t11!5S 12pc

~ l 21!

N21 D S ~11si1sj !

~11si !~11sj !
C~ i j ,t !

2
~sisj1si1sj !

~11si !~11sj !
D . ~26!

Thus the effect of crossover is to weaken but not can
completely the anticorrelations induced byk50 selection. In
the remainder of this section we will consider this effect f
general schemata.
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In our search for the relevant EDOF and in analyzing
building block hypothesis we will now consider schemata
lengthl , irrespective of their order or their overall position
a string. This is a further coarse graining relative to the e
lution equations considered earlier. The evolution equa
~17! by itself is not very useful for analyzing schemata
size l , as any given string contains schemata of all siz
However, consideration of just about any quantity in co
junction with Eq.~17! and a sum over schemata of a giv
length is meaningful. Our notation here is that for any fun
tion A(j,t),

^A~ t !& l5

(
i 51

~N2 l 11!

(
N252

l

(
$N2%

(
words

P~j,t !A~j,t !

~N2 l 11!2l 22 , ~27!

where l>2. The first sum is over the possible beginni
point i of the schema and the following two sums repres
the different configurations of any numberN2< l 22 speci-
fied bits chosen among thel 22 available sites. The numbe
of available sites isl 22 because we fix the ends bits.

Using Eq.~17! one may derive a recursion relation for th
expectation value ofA; however, time dependence enters n
only in the changing probability distributionP(j,t11),
which can be substituted using Eq.~17!, but also inA(j,t
11). This occurs even though many observables of inte
are time-independent functions of the string states as
summing over degrees of freedom associated with passin
a more coarse grained description induces an implicit t
dependence in the coarse grained observables. For exa
f̄ (j,t) is a population-dependent observable, even tho
f (Ci) is not. To simplify matters, to search for structure
the population we define a time-independent function
schemata: the average selective advantage that in-sch
bits would enjoy if the schema were immersed in a rand
population,

d f j5S N

N2
D S 1

2N2N2D (
h2words

2N2N2

~ f ~j,h!2 1
2 ! , ~28!

whereh represents the out-of-schema bits and the aver
fitness in a random population has been normalized to
Note that here and in the rest of the paper we are lookin
the fitness deviation per schema bit as opposed to Sec
where the total fitness of a schema was being conside
This observable corresponds to theeffective fitnessof in-
schema bits if the populationis in fact random, or if the
landscape assigns an independent fitness contribution to
bit in the chromosome~k50 in the terminology of the
KauffmanNk-model!. In general, it is a useful test functio
with which one can probe for the emergence of struct
during the first steps of evolution away from a random init
population. We will refer to this observable below as t
in-schema fitness.

We will make use below of the following simplified av
erages: ifA(j) is independent of the initial defining point o
the schema, or if the landscape is ‘‘generic,’’ then we c
sum over this point to find
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^A~ t !& l5
1

2l 22 (
N252

l

(
$N2%

(
words

P~j,t !A~j!. ~29!

By ‘‘generic’’ we mean that within the class of landscap
we are considering, such as anNk model for a particular
value ofk, there is no systematic bias in the fitness functi
for a particular part of the string, i.e., the sums over wor
configurations, andN2 lead to an average that is effective
translation invariant ~the system is effectively self
averaging!. We will also use the notation̂̂A&&1 to represent
the average over schemata and over crossover po
namely,^^A&& l51/(l 21)( i 51

l 21^A& l .
Considering the expectation value of the in-schema

ness, the equation that gives the improvement of^d f j& l from
generationt to generationt11 is

D l5 KK d f j

d f eff~j,t !

f ~ t ! LL
l

, ~30!

where d f eff(j,t)5feff(j,t)2 f̄(t). More explicitly, using the
evolution equation for schemata, one finds

D l5K d f jd f̄ ~j,t !

f̄ ~ t !
L

l

2pcS l 21

N21
D KK d f j

P~j,t !
@P8~j,t !

2P8~jL ,t !P8~jR ,t !#LL
l

, ~31!

whered f̄ (j,t)5 f̄ (j,t)2 f̄ (t). The first term is independen
of l in a random population if the fitness landscape itself il
independent.

As defined,D l measures the average improvement of
in-schema fitness over one step of evolution. How does
improvement come about? First of all, schemata w
d f̄ (j,t).0 will be more frequent in the parent populatio
thanks to the selection factor (11s), where s
5d f̄ (j,t)/ f (t)5(2N2 /N)d f j , where the latter equality is
only true for a random initial population ork50 model. The
next step is to consider the action of the crossover opera
On the other hand, selected parents withj may not pass it on
to their offspring if crossover ‘‘breaks’’ the schema. How
ever, there is a possibility thatj will be reconstructed from
parents that have parts ofj but not all of it. The question is
which is larger for a particular value ofl? Before we turn to
answering this question in particular cases, let us cons
the relation betweenD l and the spatial correlation function

If the population is uncorrelated; in other words,
P(j,t)5P i P(j i ,t), where j i is the i th bit of j, then the
expectation value ofd f j is independent ofl , as N2d f j

5( id f j i
and ^( id f j i

& l is just the uncorrelated sum of con
tributions from 1 schemata. The fact that the existence
correlations inP(j,t11) implies anl dependence can b
demonstrated explicitly. One writes
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f eff~j,t !'
1

N2
(
i 51

N2

f 1~j i !1
1

N2~N221!

3(
i 51

N2

(
j Þ i

$ f 2~j ij j !2 1
2 @ f 1~j i !1 f 1~j j !#%,

~32!

where

f 1~j i !5
1

2N221 (
$jk , kÞ i %

f eff~$jk%!, ~33!

f 2~j ij j !5
1

2N222 (
$jk , kÞ i , j %

f eff~$jk%!, ~34!

and we are considering only up to two-point correlatio
Defining dsj5d f eff(j,t)2dfj , which is a measure of the se
lective advantage over and above the in-schema fitness,
finds

dsj'
1

N2
(
i 51

N2

f 1~j i !1
1

N2~N221! (
i 51

N2

(
j Þ i

$ f 2~j ij j !

2 1
2 @ f 1~j i !1 f 1~j j !#%2 f̄ ~ t !2d f j . ~35!

For ak50 landscape,

dsj'
1

N2~N221! (
i 51

N2

(
j Þ i

$ f 2~j ij j !2 1
2 @ f 1~j i !1 f 1~j j !#%.

~36!

So, in this case we see that the existence of a selective
vantage is due to the existence of correlations in the effec
fitness. Defining a selective coefficientsl that represents the
selective advantage for a schema to be of sizel , one finds

D l5 ^̂ d f j
2&& l~11si !, ~37!

where

sl5
^̂ d f j

2dsj&& l

^̂ d f j
2&& l

. ~38!

In this expression forD l , ^̂ d f j
2&& is independent ofl for a

random initial population. Thus we see that anyl depen-
dence can be attributed to the existence of spatial corr
tions.

If the reconstruction term from crossover exceeds the
struction term for somel , one can conclude that the fitne
improvement attributed to a particular bit in the string d
pends on its being part of selected schemata of this size.
the conditioning information on the existence of other spe
fied bits should be useful, is a direct consequence of
correlations between the different bits in the string. We e
phasize the relation betweenD l and the correlation function
because correlations are intimately linked to the emerge
of EDOF. In this sense, the functionD l is related to the
expected size distribution of the EDOF.
.
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V. ASYMPTOTIC SOLUTIONS

In this section we consider some asymptotic solutions
the evolution equation forD l derived in Sec. IV. In particu-
lar, we will consider two limiting cases: the evolution o
schemata starting from a completely random initial state,
a random perturbation around a completely ordered state
one of our principal considerations is in investigating t
validity of the building block hypothesis, we will set th
mutation rate to zero, as the effects of the latter do not
pend on schema size. We will derive expressions
D l(t11) andD l(t12) starting out from an initial random
population at timet.

For a random initial population at timet,

D l~ t12!5 ^̂ d f j~ t12!&& l2D l~ t11!. ~39!

Even thoughd f j is time independent, we use the above n
tation to indicate that its expectation value is with respec
the probability distribution at timet12. In the initial random
population the effective schema fitness is the in-schema
ness d f j and d f̄ (j,t)5(N2 /N)d f j , P(j,t)51/2N2. Thus
one finds

D l~ t11!5S 12pcS l 21

N21D D ^̂ a&& l1pcS l 21

N21D
3 KK NL

N2
bL1

NR

N2
bR1

4NLNR

N2 d f jd f jL
d f jRLL

l

,

~40!

where we have introduced the notation for the quadra
terms

a5
1

2N2 (
words

2N2

N
d f j

2 bL5
1

2N2 (
words

2N2

N
d f jd f jL

,

~41!

with an analogous expression forbR .
We will now derive explicit results in some concre

cases based on generic fitness landscapes. The KauffmaNk
models provide such a set of landscapes. Here we will s
cialize to the casek50, which is neutral in the sense that
neither favors nor disfavors correlations between bits. In
k50 landscape,

d f j5
NL

N2
d f jL

1
NR

N2
d f jR

. ~42!

We also have that̂̂ d f jd f jL
d f jR

&& l50, which results in the
complete cancellation of the destruction and reconstruc
crossover terms, the final result being

D l~ t11!5 ^̂ a&& l . ~43!

The above expression is for an arbitraryk50 landscape.
To find a more explicit solution we must consider a mo
explicit landscape. We will consider two: a binary landsca
where the fitness of a bit may only take two values, 1 and
and a landscape where the fitness of a bit is selected
formly at random from the interval@0,1#. Both landscapes
conform with the requirement that the average fitness pe
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57 3259EFFECTIVE DEGREES OF FREEDOM IN GENETIC . . .
in a random population be 1/2. Letxi denote the deviation
from the mean fitness of bit numberi , i.e., xi5 f i21/2. The
averaging over configurations then gives, forl>3,

^̂ a&& l5
2

N~N2 l 11!l ~ l 21!~ l 22! (
i 51

N

mixi
2,

where

mi5 l ~ l 21!~ l 22! ~ l< i<N2 l 11!,

mi5~ l 223l !1 i ~ l 225l 18!1
l 22i

2l 22 ~ i , l !,

and symmetrically fori .N2 l . Explicitly,

^̂ a&& l5
c

6N
, ~44!

where c53 for the binary landscape and 1 in the rando
landscape. In the latter for largeN we have assumed that th
average over theN bits ~weighted byni! can be replaced by
an average over the distribution ofxi used to generate th
landscape. Thus one sees that crossover acts in a sca
variant way at the first time step of evolution from a rando
initial population: there is no preference whatsoever
small blocks at the expense of large blocks.

We will now consider what happens at timet12. The
extra ingredient we need relative to the above calculatio
^̂ d f j(t12)&& l . To calculate this we in turn need to calcula
P8(j,t11), P8(jL ,t11), andP8(jR ,t11), i.e., the selec-
tion probabilities at timet11, calculation of which requires
knowledge of f̄ (j,t11), f̄ (jL ,t11) f̄ (jR ,t11), and f̄ (t
11). Specializing once again to ak50 landscape, one find

P8~j,t11!5
1

2N2~112as!
H S 11

2N2

N
d f jD 2

12
~N2N2!

N
a~N2N2!1

pc

N21

3S 11
2N2

N
d f jD (

k51

l 21
4NLNR

N2 d f jL
d f jR

1
4pc

N~N21! F (
k51

l 21

~NRd f jR
b~k2NL!

1NLd f jL
b~N2k2NR!!1N2d f j

3S (
k,j

bk1(
k.j

b~N2k!D G J , ~45!

where

a~N2N2!5
1

2N2N2 (
h2words

2~N2N2!

N
d f h

2, ~46!

b~k2NL!5
1

2k2NL S 2~k2NL!

N D 2

(
hL2words

d f hL

2 , ~47!
in-

r

is

bk5
1

2k S 2k

N D 2

(
L2words

d f L
2. ~48!

In Eq. ~48! the sum is over words associated with bits to t
left of the crossover point given that all the schemaj lies to
the right of the crossover point. The expression forb (N2k) is
analogous, but with the sum over words being associa
with bits to the right of the crossover point, given that t
schema lies to the left. Equation~47! is associated with a
sum over words for the bits to the left of the crossover po
but excluding bits that are in the schema. Likewise the
pressionb (N2k2NR) contains a sum over words associat

with bits that are out of the schema to the right of the cro
over point. Finally, as511(2N2 /N)a1@2(N
2N2)/N#a (N2N2) .

If one considersjL and jR as schemata on exactly th
same footing asj, then the expressions forP8(jL ,t11) and
P8(jR ,t11) are completely analogous to those above,
cept that one is now considering the bits ofjL andjR that lie
to the left and the right of the crossover point. Combini
these expressions with Eqs.~45!–~48!, after some lengthy
but straightforward calculations one finds

D l~ t12!5S 122as

112as
D ^̂ a&& l1

pc

~112as!~N21!

3 KK 2N

N2
~bRbk1bLb~N2k!!LL

l

1
2pc

~112as!~N21!

3K a(
k,j

bk1a(
k.j

b~N2k!L
l

. ~49!

The first term on the right-hand side of Eq.~49! is the result
of the effect of selection att11 on the population that wa
the result of selection att. It is crossover independent. Th
last two terms are associated with the effects of selection
the population at timet11, which has incorporated non
trivial contributions from crossover at timet. More pre-
cisely, the picture is the following:k50 selection on a ran-
dom population induces anticorrelations inP8(jL ,jR ,t)
when bothd f jL

and d f jR
are positive due to the quadrat

term ;d f jR
d f jL

. Crossover reduces these anticorrelatio

thereby enhancing thewhole schemaj5jL1jR relative to
its parts. Selection att11 reinforces this effect of crossove
to enhancej, leading to the net positive contribution t
D l(t52).

As above, we will consider the binary landscape and
landscape where the fitness of a bit is selected uniformly
random from the interval@0,1#. Similar calculations to the
ones given above for̂̂ a&& l lead to the final expression fo
D l(t12),
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FIG. 1. Multiplicative renormalization of the effective fitness due to crossover, (11sl), is represented as a function of the schema len
l . The crossover term gives a positive contribution to fitness growth for all values ofl , which is greater for schema sizes that are either m
smaller or much larger than half the chromosome size.
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D l~ t12!5S 3N2c

3N1cD c

6N

1pcS 2N22Nl1 l 21N1 l 282~8/2l !

144~3N1c!N2~N21! D .

~50!

From this expression one can readily see that the effect
crossover are always positive, i.e., the effects of schema
construction outweigh those of schema destruction. A gr
of D l(t12) versusl can be seen in Fig. 1.

We now turn our attention briefly to the limiting case
an almost organized population. In this limit, one can co
sider that the strings differ from the population consensu
most at one site; we will refer to the differing site as a ‘‘d
fect.’’ There areN possible defects, each with an effectiv
negative fitness differential over the consensus string.
evolution equation implies in this case that the effect
crossover is strictly neutral: there is no net creation or
struction of defects by pure crossover without selection.
in this limit D l is once again strictly independent ofl . The
possibility of multiple defects in a single string raises t
possibility of correlations in the distribution of defects alo
the string, which would induce mirroring correlations in th
schemata, soD l may acquire a nontriviall dependence as
second order effect in the mean density of defects, whic
the perturbative expansion parameter near the ordered l

Taking once again thek50 landscape, the fitness penal
per bit for two defects is given by 2d f i j 5d f i1d f j , so that

P8~ i j ,t !2P8~ i ,t !P8~ j ,t !;2
d f id f j

f̄ 2N2
.
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Since d f id f j.0, P8( i j ,t),P8( i ,t)P8( j ,t): selection in-
duces an anticorrelation between the defects. Crossove
hances P( i j ,t11) to bring it closer to P( i ,t11)P( j ,t
11). Since the schema (i j ) is more strongly damped thani
or j separately, the selection at the next time step will d
stroy more defects than without crossover. So here again
near the random limit, crossover has a beneficial effect
to the enhancement of the whole schema relative to its pa
Near the random limit this was beneficial because the wh
schema was picked up by selection; here it is beneficial
cause the whole schema is more strongly damped by n
tive selection, so defects die out more rapidly.

VI. EFFECTIVE DEGREES OF FREEDOM
IN THE N2 LANDSCAPE

The k50 landscape discussed in the preceding sec
has the virtue of being ‘‘neutral’’ from the point of view o
the block hypothesis; however, it is not a realistic example
landscapes usually encountered in complex optimiza
problems; we will therefore turn our attention to the casek
52 ~for a description of the Kaufmann model, see@8#!.
There are two mechanisms by which connected landsca
can induce correlations. On the other hand, schemata
contain landscape-related bits have a sharper selective c
ficient because there are fewer unspecified bits involved
their fitness contribution. On the other hand, the balance
tween the schema destruction and reconstruction terms f
crossover is broken to first order.

Let us first restrict our attention to schemata of two de
nite bits (N252). There are three possible situations for a
schema. Either the two bits are not connected by the fitn
landscape, one bit is the connected partner of the othe
the bits are connected both ways. This last situation is
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57 3261EFFECTIVE DEGREES OF FREEDOM IN GENETIC . . .
probable forN@1, so we will focus on the first two cases.
one has two unrelated bits in an otherwise random ini
population, the effective fitness of each bit in this schem
equal to an average of four of the eight random number
the fitness table at that site, because one of the three b
fixed and the other two are picked at random. If, on the ot
hand, one of the bits is connected to the other, then its fitn
contribution is given by averaging over the two possible v
ues that the other connected partner can take. This is
average of two out of the eight random numbers in the fitn
table. The key point is that the average of two random nu
bers typically differs from 1/2 more than the average of fo
Therefore, schemata that include landscape-related bits
have a stronger selective coefficient, in absolute value. T
leads to a bias for the condensation of schemata that re
nize the structure of the fitness landscape.

In order to make this argument more precise, we nee
compute the expectation value of the best ofm1 averages of
m2 random numbers, where each random number is
formly distributed in the unit interval. The probability distr
bution of the best ofm1 averages ofm2 random numbers is
equal to the derivative of the probability thatz is larger than
all m1 averages. If we callP(x1 ,...,xm1

) the distribution of

the averages, the probability thatz is greater than all of the
averages is

p„z.sup~mi !…5E
0

1

dx1•••E
0

1

dxm1
P~x1 ,...,xm1

!

3)
i 51

m1

u~z2xi !. ~51!

Since them1 averages are statistically independent in t
case, this expression reduces to

p~z!5S E
0

1

dx P~x!u~z2x! D m1

. ~52!

The expectation value of the best of them1 averages is

^zmax&5E zp8~z!dz. ~53!

For our purposes it is sufficient to consider the ca
wherem1 , m2P$2,4%. For m252 the distribution of the av-
erage of two uniformly distributed random numbers is giv
by P(x)54x for x,1/2 and the symmetry conditionP(1/2
1x)5P(1/22x). The expectation values for the best ofm1 ,
such averages are, form152, m252, ^zmax&50.6167; while
for m154, m252, ^zmax&50.7300. Form254 ~averages of
four uniformly distributed variables!, one has

P~x!5 128
3 x3 for x, 1

4 , ~54!

P~x!5 128
3 x32 2

3 for 1
4 ,x, 1

2 , ~55!

and the symmetry condition given above. One finds the
lowing result: form152, m254, ^zmax&50.5673. Finally, the
expectation value of the best ofm1 uniformly distributed
random variables iŝzmax&5m1 /(m111). Here we will need
only the best of eight, which is equal to 8/950.8889.
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If the two bits are not related by a landscape connect
the effective fitness of any one of these bits in a rand
population is given by the average of four random numb
from the fitness table, where the averaging is over the va
of the two connected partners that determine the fitness
tribution of this bit. Thus, the best schema can be expecte
have a selective advantages15( f̄ j / f̄ )215(4/N)(0.567
20.5). Now, if there is a landscape connection between
two bits of the schema, the contribution of one of these b
to the string fitness is given by an average of two rand
numbers, since we only need to average over the other
nected partner that is not in the schema. The best schem
this case will have a selective advantages25(4/N)@(0.567
10.73)/2)20.5].

In the caseN540 analyzed in the preceding section, t
ratio of the growth rates of a 2 schema that recognizes
landscape connection to that of one that does not isr 5@(1
1s2)/(11s1)#51.0081. This result should be compared
the effect of crossover, which we computed in thek50 land-
scape at the second time step: 11sl was found to fluctuate
between 1.0025 atl 5N/2 and 1.0029 atl 52, l 5N21.
Clearly, the conclusion is that landscape correlations sho
be taken into account in a proper analysis of the conden
tion of ‘‘schemata.’’

In our discussion we neglected the possible existence
frustration and assumed that the fitness contribution of
two bits of the schema could be optimized independen
without affecting the mean fitness contribution of the oth
bits in the string. A more careful analysis including frustr
tion would be much more complicated; however, one expe
that at least for smallN2 , frustration should be marginal an
that our conclusions should hold qualitatively. Of cours
there are fewer 2 schemata that recognize a landscape
nection than not, so the overall contribution of such sc
mata to the condensation of EDOF is diluted by a ph
space factor 2/N, relative to 2 schemata of landscape-relat
bits. Thus, one expects that the first stage of divergence f
a random population will be dominated by schemata that
not ‘‘understand’’ the fitness landscape. The landsca
related schemata, which grow at a faster rate, will eventu
overcome the contrary phase space factor and become
important in the condensation process.

Returning to the fundamental equation~16! for the growth
of in-schema fitness, we can evaluate the effect of crosso
in a k52 landscape by calculatingD t in the first step away
from a random population:

DN252
~n! 5 K 4

N
d f j

2L ~n!

2
4pc

N~N21!
^ l 21&~n!

3 K d f jS d f j2
NL

N2
d f jL

2
NR

N2
d f jRD L ~n!

,

where we have used the identity, valid in a random popu
tion, (wordsd f jL

d f jR
d f j50, and the averagê& (n) runs over

the set of all schemata withN252 definite bits with n
50,1,2 landscape connections between schema bits. We
also assuming that there is not explicitl dependence in the
fitness landscape itself.

The evaluation ofd f j depends on the number of in
schema connections. One must evaluate the contributio
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each of the two bits in the schema. If there are no in-sche
connections, then the averaging over unspecified bits lead
a contribution tod f j equal to the average of four of the eig
random numbers in the fitness table. If one of the bits
connected to the other, then in evaluating its fitness con
bution one has only one unspecified bit and the contribu
to d f j turns out to be the average of two of the eight rand
numbers. The values ofd f jL

and d f jR
are always given by

the average of four random numbers. Thus, if there are
in-schema connections,d f j5(NL /N2)d f jL

1(NR /N2)d f jR

and the contribution of the crossover term vanishes as in
k50 case. If we denote bys2 the variance of the random
number distribution used to generate the tables of eight p
sible fitness contributions for each bit, the averaging o
schemata withn50 landscape connections gives

DN252
~0! 5 K 4

N
d f j

2L ~0!

5
s2

2N
.

On the other hand, if there is one in-schema connection,
^d f j

2& (0) is the variance of the average of two random nu
bers plus the variance of an average of four, while one of
terms^d f jd f jL

& (0) or ^d f jd f jR
& (0) is equal to half the vari-

ance of two random numbers, the other being the varianc
an average of four. Usinĝl 21&5(N11)/3, one finds

DN252
~1! 5S 3

4
2

pc~N11!

12~N21! D s2

N

5DN252
~0! 1DN252

~0! S 1

2
2

pc~N11!

6~N21! D .

Similarly, for n52 in-schema connections,

DN252
~2! 2DN252

~0! 5DN252
~0! S 12

pc~N11!

3~N21! D .

In these expressions, thepc-independent correction is th
result of the selective advantage of schemata that recog
landscape connections, which we discussed previou
These numbers appear somewhat magnified relative tr .
This is only because here we are examining the in-sch
fitness per bit, whereasr was associated with the growth ra
of the entire string. The crossover contribution reduces
correlating effect of the landscape but only by a factor of
in the limit pc→1, N→`. In conclusion, schemata that re
flect the landscape connections contribute more~per bit! to
the growth of fitness than schemata involving unrelated b

A similar conclusion can be expected to hold if one co
siders larger schemata withN2.2. Extending the argumen
to general schemata, one is led to considerfitness trees: the
fitness tree of a bit is the set that consists of the bit itself,
connected partners, the connected partners of the these
nected partners, and so on. We can define an ordern trun-
cated fitness tree by truncating this procedure aftern steps.
The dominant value ofn depends on the degree of order
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the system, which is a function of the mutation rate. Fo
high mutation rate one expects the gene pool to be hig
disordered and EDOF are mostly single bits (n50) or trun-
cated fitness trees with small values ofn. As the rate de-
creases, larger trees can condense and the dominant val
n increases. This leads us to propose the following con
ture on the nature of the EDOF, which we shall call t
‘‘fitness tree hypothesis.’’

Hypothesis.The EDOF of genetic algorithms withNk
fitness landscapes are the truncated ordern fitness trees. The
effective value ofn increases as the condensation proc
allows for an increasingly structured gene pool.

In order to test this hypothesis we designed a numer
simulation with a population of 1000 individuals in anNk
landscape, withN540 andk52. The crossover probability
was taken to be equal to 1. The spatial correlation funct
measures the correlation of bits at distanced along the string
and tests the block hypothesis directly. A second correla
function measures this correlation as a function of the c
nective distance between bits, defined as the smallest num
of landscape connections from one bit to the other. The
sults are shown in@Figs. 2~a!–2~c!#. At generation 15@Fig.
2~a!# the spatial correlation function reflects the preferen
for small schemata, as suggested by the block hypothe
After 100 generations@Fig. 2~b!# the spatial correlation func
tion has become weak and roughly independent of the
tance; on the other hand, the correlation of landscape-rel
bits becomes significant at connective distance 1. By gen
tion number 150 one finds statistically significant corre
tions up to connective distance 4, which are progressiv
reinforced. In Fig. 2~c! we show the correlation functions a
generation 200. Since the mutation rate is equal to zero
these simulations, population diversity eventually decrea
and becomes insufficient to derive statistically relevant c
relation coefficients. At generation 350 the strings are tota
condensed up to connective distance 2~the first two correla-
tion coefficients are equal to 1!; the gene pool is completely
organized at the 500th generation.

Throughout this article, with the exception of the nume
cal experiments, finite-size effects were neglected. If o
considers their contribution, the failure of the block hypot
esis only becomes more apparent. Here we will mention o
briefly two arguments to this effect. In a finite population t
difficulty of findinga good schema must be considered, sin
not all schemata are present in the initial population. Sin
the number of schemata with fixedN2 grows with l as
l 22CN222 , one expects it to be easier to discover good la
schemata than small ones. Another important finite-size
fect is the effective nonlinearity of selection emphasized
the neutral theory of molecular evolution@9#: Schemata with
only weak selective coefficients are not necessarily selec
as the neutral drift due to fluctuations in the selection
parents dominates over selection unlessuseffu.1/P, P being
the effective breeding population. This leads to an effect
nonlinearity of selection due to the existence of a thresh
in favor of schemata with a selective coefficient above t
value. Since the selective coefficient of a schema grows
proportion toN2 , this effect favors schemata with largeN2 .
Combining this result with the previous comment on t
probability of finding good schemata being proportional
l 22CN222 , we find that schemata with small values ofl are
strongly disfavored by the finite-size effects.
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VII. CONCLUSIONS

The bulk of this paper has been devoted to deriving eq
tions that describe the evolution of string populations
GAs, and in particular how EDOF may emerge during t
evolution. We started with an equation that governed
evolution of the strings themselves under the joint action

FIG. 2. Average absolute correlations between bits in the ch
mosome are given in terms of (B) the linear distance that separat
the bits on the chromosome, and (C) the connective distance de
fined as the smallest number of landscape connections to go
one bit to the other. Very early on one notes a slight preference
correlations between bits that are near each other on the chro
some, i.e., with l !N ~a!. By t5100 the correlations betwee
landscape-related bits become important~b!, and they come to
dominate att5200 ~c!. At this point the population is highly orga
nized and correlations on the basis of linear chromosome dist
are no longer significant.
a-

s
e
f

selection, mutation, and crossover. We found that this eq
tion could be elegantly expressed in terms of the evolution
a stringCi and its constituent parts. This naturally introduc
the notion of a coarse graining relative to a description
terms of the strings themselves, the coarse graining be
associated with sums overs strings that contained a pa
Ci . Subsequently we derived an analogous equation for
evolution of schemata, this time in terms of a schema and
constituent parts. Schema evolution is coarse grained rela
to string evolution because of the summing over theN2N2
nonschema bits. The evolution of a schema ofO(N2) is de-
scribed in terms of its constituent parts, which are schem
of order less thanN2 . Thus the action of crossover invokes
natural hierarchy of coarse grainings. Such a hierarchy
reminiscent of a renormalization group transformatio
where there is a coarse graining over a subset of degree
freedom, such as in the one-dimensional Ising model, wh
one may sum over every other spin in the partition functio
for instance. In the GA case this coarse graining stops n
rally when one arrives at the evolution of 1 schemata.

In one sense it is remarkable that one may solve ana
cally a GA, albeit for a simple fitness landscape and ove
short time interval; however, what is lacking is a reasona
approximation scheme with which one may attack the e
lution equations. Just as solving an exact renormaliza
group equation is almost impossible, so with GAs findi
exact solutions is probably hopeless. However, impleme
ing renormalization group transformations approximately h
been remarkably successful in explaining many phys
phenomena. We hope that finding analogous technique
the study of GAs might lead to similar success.

Starting from the evolution equation for schemata, a f
ther coarse graining was performed to arrive at an expres
for the average contribution of all schemata of sizel to the
improvement of fitness. Applying this equation to the pa
ticular case of ak50 landscape, where each bit contribut
independently to fitness, we showed that the net effec
crossover on fitness growth is slightly positive for alll : the
effect of schema reconstruction always exceeds that of
struction. Schemata that are either much smaller or m
larger than half the string size are most enhanced. A differ
situation arises if one considers ak.0 landscape. In this
case the sum of the effective selective advantages of the p
of a schema is not necessarily equal to the effective selec
advantage of the entire schema. Only when the parts
selected schema are less selected than the whole~the decep-
tive case!, does crossover lead to a net destructive force
schemata are broken down into pieces that are then lost
to their low selectivity. The schemata that are selected ov
long time scale are those that break down into useful pa
independently of their size.

Finite-size effects break the apparent symmetry of
geometrical effect of crossover aboutl 5N/2: The existence
of a selection threshold favors highly fit schemata with
large number of specified bitsN2 , and these can be foun
with a reasonable probability only if their lengthl is large.
Combining this argument with thel dependence of in-
schema fitness growthD l , one concludes that the effectiv
degrees of freedom will be schemata with largeN2 and l
.N/2.

This conclusion has important and surprising con
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3264 57C. R. STEPHENS AND H. WAELBROECK
quences for the designer of GAs. It is often thought that G
designers should strive to find a coding such that bits
‘‘cooperate’’ are placed near each other on the chromoso
so as to resist the destructive effect of crossover. Thi
generally speaking a very difficult task, since the structure
the optimization problem usually does not match the lin
topology of the strings. Our results show that this task
pointless: if anything, one should try to place cooperat
bits as far from each other as possible. Of course this is
most probable outcome if no attention is placed on the lin
disposition of the bits, so this is not a problem one sho
worry about.
We should stress that the above comment by no means
plies that the choice of coding is irrelevant. The choice o
genetic interpreter is crucial to generate a high density
states near desired fitness extrema and perhaps also to
the emergence of an algorithmic language@16# that facili-
tates the search for new highly fit schemata. These iss
however, lie beyond the scope of the present paper.
With the results of this paper in mind, it is interesting
recall the analogy between GAs and spin glass dynam
discussed in the Introduction. In both cases one is descri
tt.
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a condensation process in a rugged landscape, guided b
emergence of overlaps with certain structures or ‘‘pattern
One of the chief reasons why in GAs the overlaps with sc
mata are considered rather than with entire strings~N25N
schemata! is that genetic populations are generally too dis
dered for such a rigid structure as a completely speci
string to be of much relevance. Of course the same can
said of spin glasses far from equilibrium. This suggests t
the notion of ‘‘schema’’ may find some usage in the study
the condensation of spin glasses from an initial disorde
phase. One can carry the analogy between GAs and
glasses one step further and suggest that, in the cas
sparsely connected neural networks, the truncated conne
trees may form a privileged class of schemata for the purp
of developing an effective theory of neural dynamics.
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