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An evolution equation for a population of strings evolving under the genetic operators, selection, mutation,
and crossover, is derived. The corresponding equation describing the evolution of schemata is found by
performing an exact coarse graining of this equation. In particular, exact expressions for schema reconstruction
are derived that allow for a critical appraisal of the “building-block hypothesis™” of genetic algorithms. A
further coarse graining is made by considering the contribution of all leihgtiiremata to the evolution of
population observables such as fitness growth. As a test function for investigating the emergence of structure
in the evolution, the increase per generation ofithechemata fithesaveraged over all schemata of length
A, is introduced. In finding solutions to the evolution equations we concentrate more on the effects of
crossover; in particular, we consider crossover in the context of Kauffishiamodels withk=0,2. Fork
=0, with a random initial population, in the first step of evolution the contribution from schema reconstruction
is equal to that of schema destruction leading to a scale invariant situation where the contribution to fitness of
schemata of sizé is independent of. This balance is broken in the next step of evolution, leading to a
situation where schemata that are either much larger or much smaller than half the string size dominate those
with |=N/2. The balance between block destruction and reconstruction is also brokén~ii &andscape. It
is conjectured that the effective degrees of freedom for such landscapEsdseape connective tredisat
break down into effectively fit smaller blocks, and not the blocks themselves. Numerical simulations confirm
this “connective tree hypothesis” by showing that correlations drop off with connective distance and not with
intrachromosomal distancES1063-651X98)10002-9

PACS numbgs): 87.10+€, 02.50--r, 05.50+q

[. INTRODUCTION should be clear that the description of the EDOF themselves
requires a large amount of information: One gets a measure
One of the most important steps in developing a qualitaof the complexity of the system by the information in its
tive or quantitative model of a system is to gain an under£EDOF. Note that in this example the system’s dynamics is
standing of the nature of its effective degrees of freedonguided by large-scale attracting structutdge patterng the
(EDOP). An important feature that distinguishes them is thatEDOF (overlap$ being the instruments that measure how
their mutual interactions are not very strong; that is to saystructure emerges as the system condenses from a disordered
they must have a certain degree of integrity. In this sense, thehase. Some other examples of structured complex systems
aim of developing an effective model of a system is to arriveinclude the brain, gene expression in eukaryotic ddl}sand
at a description of the system in terms mlevant (e.g.,  of course evolution theory and GAs, among many others. We
“macroscopic”) variables. know that these systems astructuredbecause their behav-
Identifying the correct EDOF in complex systems is gen-ior is manifestly nonrandom; for instance, neural dynamics
erally speaking a very difficult task. To begin with, more must be structured if the brain is to be of any use. Yet in
often than not they are scale dependent, where what onmost cases we have no idea what the nature of this structure
means by “scale” depends on the particular problem undeis, much less how to identify EDOF.
consideration. In the case of evolution theory and genetic In this paper we will begin to analyze the notion of EDOF
algorithms(GAs), one expects to find different EDOF at dif- in the context of GA{5,6]. We emphasize, however, that
ferent time scales. Generically if a system is complex at thé&5As form only one area of interest where the results and
relevant scale then it will admit a simple effective dynamicsconclusions of this paper are applicable, some others being
only in terms of complex degrees of freedom: one trades thstatistical mechanic$7], biology [4], the KauffmanNk
complicated dynamics that results from the nonlinear intermodel[8], and evolution theory9].
actions of the many “elementary” degrees of freedom for Trying to ascertain what EDOF a GA is using in order to
the simpler dynamics of more complicated EDOF. What onearrive at an optimal solution is in the strict sense a nonsen-
gains in the trade is effective predictability; what one loses issical question—roughly equivalent to asking “what are the
detall. EDOF of a block of material?” Of course, the answer de-
It is well worth recalling in this context the example of pends on the type of material under consideration and its
spin glass models of neural netwoiis-3]. In this case the state. However, it imot nonsensical to think of what are the
EDOF are the overlaps with a certain number of “patterns,”EDOF in a generic type of fitness landscape. The fitness
each of which is related to a local extremum of the energyandscapes we choose to consider as being representative of
landscape or Hamiltonian. Since a large number of uncorregeneral classes of fithess landscapes are Kauffmblik's
lated patterns is involved in this effective representation, itmodels withk=0 andk=2.

1063-651X/98/5{3)/3251(14)/$15.00 57 3251 © 1998 The American Physical Society



3252 C. R. STEPHENS AND H. WAELBROECK 57

As in the example of spin glasses, the dynamics of GAs Il. GENETIC ALGORITHMS AND THE BUILDING
can be viewed as a condensation process in a rugged land- BLOCK HYPOTHESIS
scape. So again one expects the EDOF to represent the emer-
gence of certain structures, or “patterns,” which are related GAs have become increasingly popular in the analysis of
to local fitness optima. In GA theory one usually considerscomplex search and optimization problems and in machine
partly specified patterns, called “schemata,” and determinesearning, one of their chief attributes being their robustness
the fraction of all the individuals in the population that in- (see[10] and references therein for a recent overyie@ne
clude a particular schema, this being a measure of orddregins with a complex optimization problem that depends on
comparable to the “overlap” of spin glass models. Since ongnany variables. The variables and the rules that govern them
does not knowa priori which schemata lead to a useful set of are subsequently coded in the form of a population of strings
EDOF, some hypothesis must be made to this effect. Thé'chromosomes’). The latter consist of a set of symbols
standard conjecture about the EDOF of GAs is the “building("alleles™), each symbol taking values defined over an al-
block hypothesis[5,6], the essence of which is that a GA Phabet. _ _
arrives at an optimal solution of a complex problem via the '€ Population evolves under the action of a set of ge-
combination ofshort fit schemata. In this paper we will netic operators. Reproduction can be. |mplemented In many
present both analytic and numerical evidence that genericall ifferent ways; all have the effect of increasing the relative

this is not the case. The argument for the block hypothesis iFuunrztti)c?;Sf Pff‘(fﬁ ﬁt”ngvsﬁélgjssisbﬁgi rgizsglf esctjritr)]y Ztgttr;iss
that large schemata are likely to be “broken” by the cross- s S P 9 '

over oberator. However. this araument nealects the po .b.The role of most other genetic operators is to encourage di-
Ver op . However, his argu giects possI 'l?ersity in the population. We will restrict our attention to

ity that a schema be reconstructed via parents that contain itﬁmple crossover and mutation. The former is a type of re-

constituent parts. . __ combination and involves the splitting of two parent,

It is clear that the validity c_>f the block hypothesis WI|.| Cje A, at a particular crossover poikt and the subse-
depend on the nature of the fitness landscape. If there is &,ent juxtaposition and recombination of the left half@f
Iqrger contribution to fltness from Wldely separated stringyiith the right half ofC; and the right half ofS; with the left
bits, large schemata will be favored irrespective of the effech g of C;, left and right being defined relative to the cross-
of crossover. On the contrary, if the landscape strongly fagyer pointk. Crossover is one method of generating strings
vors smaller SChemata, this would lend Support to the blOCl‘Ehat were not Origina”y in the popu|ati0n of a given genera-
hypothesis. However, the intuition behind the block hypoth-tion, thus providing diversity. Mutation, on the other hand,
esis is firmly based on the action of crossover not on theffers a form of insurance, in that if a particular bit is lost it
pathologies of particular landscapes. It is for this reason tha irrecoverable using only reproduction and crossover. Mu-
we choose to consider the block hypothesis in the context dfation offers a way to recover lost bits that may subsequently
Kauffman Nk models. We will always assume that the fit- be important in the construction of an optimum string. Using
ness landscape is generic in the sense that there is no sybe language of statistical mechanics the evolution of the GA
tematic bias in the fitness function that would favor one paris a competition between the “ordering” tendency of repro-
of the string over another. duction and the “disordering” effects of crossover and mu-

The format of the paper will be as follows. In Sec. II, as tation.

this paper is not intended for a dedicated GA audience, we 1heoretical analysis of how a GA seeks an optimum so-
will give a brief overview of various elements of GA theory. lution has focused on the notion of schemata. For strings of

In Sec. Il we will derive an evolution equation for the de- N Dits @ schema is a subsl; <N, of bits defining a certain
“word” constructed from the alphabet. In thd— N, posi-

velopment of a population of strings under the genetic op-.

erators of selection, mutation, and simple crossover. We therﬁolnS nc;ttﬂeflglttad bi; ttrrlf s_chterlpa qn:a does nott gare abofutththe
“coarse grain” this equation to derive an effective evolution vaiue ot the bit, and this Is taken nto account by use ot the

. X metasymbol, or “wild card”,*. The essential idea behind
equation for the evolution of schemata of sizeand order ; . ) .
. - the notion of the schema is that the GA arrives at an opti-
N,. In Sec. IV we consider a further coarse graining, con

ideri he eff f sch f sivbdut of d ‘mum solution through combining fit schemata. As each
sidering the effects of schemata of sizéut of any order  guinq js an example of 2N schemata, it is clear that a very

Np=<I. We consider especially the increment in fitness pefarge number of them are being processed simultaneously by
generation from such schemata showing that under genergle A a phenomenon known as implicit paralleligh Of
assumptions the coarse-grained variable is closely related {Qyyrse, not all these schemata survive crossover, which leads
the spatial correlation function, so it provides information ys to consider the size of a schemhawhich is defined as
about the size distribution of the EDOF. In Sec. V we COﬂ-(| =j—i+1), wherei andj are the first and last of tth

sider asymptotic solutions of the coarse-grained evolutiorjefining elements of the schema, respectively. In terms of
equation near a random initial population for a simple “neu-reproduction and mutation there is no preference for short
tral” fitness landscape and also make some comments abougrsus long schemata, except as might be induced by the
what happens near the ordered population limit. In Sec. Vfitness function itself. However, if one considers the effects
we consider a more nontrivial landscape wkth 2 where we  of crossover, purely in terms of the crossover point itself
introduce a conjecture about the EDOF of direct-encodedhere is a higher probability of “breaking” a long schema
GAs on anNk landscape, which we call the “connective tree than a short one. This apparent disfavor of large schemata
hypothesis.” Finally in Sec. VIl we summarize our conclu- led to what is known as the “building block” hypothesis,
sions. which claims that the joint effect of reproduction and cross-
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over is to favor highly fit bushort schemata that propagate separating an “ordered{selection dominatgdohase from a
from generation to generation exponentially. It is these“disordered” (mutation dominatedphase that manifests it-
highly fit, short schemata that are then considered to be theg|f 55 a second order phase transition at a certain critical
E?&Shlrc]: oﬁ%irﬁ%%ti% altlhs?ubGsélu?iLcjjlédsI.ng a better solution , ation rate. In the case of uniform mutations, E2).can

be mapped into an equilibrium statistical mechanics problem
using transfer matrix techniqué¢$2], where the role of in-
verse temperature is played By=3 In[p/(1—p)].

In this section we will derive an equation that describes We will now consider the effects of crossover without
the evolution of a GA induced by the effects of the threemutation. This is a much less studied case theoretically, but
genetic operators: selection, crossover, and mutation. In pagne that is very important from the point of view of EDOF,
ticular, we will consider the change in the numingi,t) of  since unlike mutations it is sensitive to the linear disposition
strings that contain a particular schejaof orderN, and  of bits along the string. Some work has been done, notably in
sizel =N,, as a function of timégeneratiohin a population the context of GAs by Prughel-Bennett and Shagit8],
of sizen. whose method models GA evolution via a small set of mac-

We will first derive evolution equations for the “micro- roscopic quantities and assumes that the system entropy is
scopic” degrees of freedom themselves—the strings. Conmaximized, and by Higg§l4] in an interesting generaliza-
sidering first selection in the absence of mutation or crosstion of the Eigen model to diploid models that include cross-

lll. STRING EVOLUTION EQUATION

over, one has over. Neither of the two approaches focuses on schemata, the
main interest of the present paper. With crossover the evolu-

P(Ci,t+1)=P'(C; 1), (1) tion equation can be written in the form

whereP’(C; ,t)=[f(C;,t)/f(t)]P(C;.t), f(C;,t) is the fit- Pe ~ 3

ness of stringC; at timet, P(C;,t)=n(C;,t)/n, and f(t) P(Ci,t+1)=P"(Ci,t)— = 12 & ce c,(K)

=3,;f(C; ,t)P(C;,t) is the average string fitness. In EQ3)

we are neglecting fluctuations in the numbel<; ,t), an XP'(C;,t)P'(C; ,t)

approximation that becomes exact in the infinite population N-1

limit. The effect of reproduction is to augment the number of N Pc E 2 (2) (k)

fit strings. However, the trouble with using selection as the N-1 c5c c7c, &1

sole genetic operator is that the search space for optima is :

restricted to that of the initial population. In complex sys- XP"(Cj,t)P'(Cy 1), (4)

tems this number will often be small compared to the size of
the total search space. This implies that finite-size effects ar&¢herep; is the probability of implementing crossover in the

important. first place,
Including the effects of mutation but not crossover gives (1)
rise to the quasispecies modall], with the evolution equa- c, (K= 6(dr'(i,1))0(dR(i,))) 5
tion
and

P(Ci ,t+1)=P(Cj)P'(C; ,t)+CEC P(C;—CyP'(Cj 1),
i#Ci
()

whereP(C;)=II}_,[1—p(k)] is the probability that string +8(dg(i,]))8(d'(i.1))), (6)
remains unmutatecp(k) being the probability of mutation
of bit k, which we assume to be a constant, though the equavheredg(i.j) is the Hamming distance between the right
tions are essentially unchanged if we also include a deperflalves of the string€; andC;, “right” being defined rela-
dence on timeP(C;—C;) is the probability that string is tive to the crossover poit The other quantities are defined
mutated into string, analogously.CQi)Cj(k) is the probability that given tha€;
was one of the parents it is destroyed by the crossover pro-
Pc—cy= I pw II  [1-pk] @ cessC(Czj)Cl(k) is the probability that given that neither parent
he{Cj—Ci} he{Cj—Cijc wasC; it is created by the crossover process, so this repre-

where{C,—C;} is the set of bits that differ betwee®, and sents a gain term. It is naturally much easier to destroy an
C, and{C —Cj}., the complement of this set, is the set of individual string by crossover than create it; hem}é@C (k)

bits that are the same. In the limit where the mutation pate is a very sparse matn)C(Z) (k) represents a contact inter-
is uniform, P(C;)=(1-p)" and P(Ci—Cj)= pd (.01 action term in Hamming space. Another important property

~p)N-4"00) whered"(i,}) is the Hamming distance be- Of C&X &K andcgj)cl(k) is that they are completely popula-
tween the strlngQ andC; . The behavior of the solutions to tion mdependent, depending only on string configurations
Eq. (2) has been much discussed in the literat(see, for and not string numbers.

example[7] and references thergiralthough mainly in the Equation(4) is an extension of the “schema theorem,” or
context of a flat fitness landscape. One of the principal feafundamental theorem of GA$5,6] that states that, for a
tures of interest is the existence of an “error threshold” schemaé, of sizel,

<2) (k)— = (8(d(i,)) (R, )
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N—-1

, (7) P(C;,t+1)=P’'(C; ,t)—NIO_C1 k; [P'(Ci,1)

-1
P(ét+1)= P’(f,t){l—pc(m)

to the case where the schema of interest is the entire string —P/(CI )P’ (C} 1], (10

(an analogous equation was denyet{]ﬁ]). The evolut|on. with P/(CHt)=S¢clP'(Ci,t), and similarly for

equation we have derived takes into account exactly, given R i=%i !

the approximation of a large population, the effects of de-P (Ci.1). .

struction and reconstruction of strings. One thus sees that crossover naturally introduces the no-
Combining the effects of both crossover and mutation fion of coarse graining, even though we are working in terms

where we assume that mutation is carried out after crossove?! the microscopic degrees of freedom—the strings. The re-
we have the evolution equation construction probability depends on the relative fitness of

strings that contain the constituent element€pf but given
that there can be many strings that conlﬁlnone must take
P(C; ,t+1)="P(Cj)P(C;i,t)+ 2 P(C;—Ci)P(C;j 1), an average over these strings. In this sense we are integrating
Ci#GC; out the “degrees of freedom” represented by the bits that are
not contained inC- or CR. Equation(10) shows that the
where effects of reconstruction will outweigh destruction if the
parts of a string are more selected than the whole.

p N-1 Before deriving a schema evolution equation including
Po(Ci ,)=P'(Ci,t)— o= > > CL (k) crossover and mutation let us consider the effects of repro-
N=1cf7c k=1 1 duction alone. The proportion of elements of the population,
XP'(C,)P'(C; 1) P(&,t), that containg satisfies the evolution equation
b N-1 P(§t+1)=P'(&1), (11)
Cc (2) R
PRI o2 o2, & ek whereP’ (£, =[1(£.0/1(1IP(£.0),
n(én
XP'(C;,t)P'(Cy b). (8) f(C;,HN(C; 1)
—_— Ci3§
We now turn our attention to the derivation of an evolu- f(&,0)= n(& b ’ (12

tion equation for schemata. Before doing this it is convenient _

to return to Eq.(4) to see that the notions of schema andthe sum is over all string<; that contain¢, and f(t)
coarse graining appear very naturally when considering the- 2 A(E)P(EL/ZP(E,1) is the average fitness per string
crossover of strings. Considering the destruction term: ther per schema of the population. Note that the sum over
matrix (5) restricts the sum to thosg; that differ formC; in strings that contaig is a sum over the possible values of the
at least one bit both to the left and to the right of the crosshbits that are not definite elements &fi.e., the wild cards. In
over point. One can convert the sum oy into an unre-  this sense, as above in E40), “degrees of freedom” have
stricted sum by subtracting off thos®, that havedf(i,j) ~ been integrated out of the problem and Ex) represents an
-0 and/ordg(i ,j)=0. Similarly one may write the recon- exact coarse graining of the original string evolution equa-

struction term as tion. L . . "
Considering mutation without crossover we ‘coarse

N—1 grain” the microscopic equatioii2) by summing over all
Pc E (2 E C(cz)c(k)P’(C,- P/ (C, 1) C;D¢. One can write an effective evolution equation for
-1\ i ’ ’

N—1 schemata evolving under mutation
~23 2L (OP'(CLOP'(C) D) PIELFD)=PEP (E0+ 2 PU—HP' (D),
G (13
—P/(C, )P'(C, ,t)). ) where the effective coeffil(:ientB(g) andP(§— &) are

P&)=1I1 [1-pk],

The second and third terms cancel with corresponding ex- K=t
pressions from the destruction term; hence E3).can be
written as ¢ 5ctZc5cRP'(Cy )P'(Cy t), where Chis Cg_ P'(C;,t)P(ci—c;)
the part ofC; to the left of the crossover point and corre- P(¢—&)=—"— TR . (14)
spondingly for CR. However, by definition f(C},t) _ (é’_t) (&9 _
= (Unct=c 5ctP’ (¢ t), wherengt is the total number of In the latter the sum is over strin@ that co_ntaln the sche-

. e . P — ) mata¢;, whered;, differs in at least one bit fron§ on the
strings in the population that contaifi§ . As f(Cl,t) is the N, defining bits of the schema.
average fitness of the substri®f, one can think of this To derive an evolution equation for schemata, including
substring as a schema,; likewise fﬁgR. In terms of these in the effects of crossover, we return to E40) and sum
“schemata” the final form of the string equation is over all stringsC;D ¢. One finds
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P(&t+1)=(1-pc)P'(&1)

Another useful concept we will introduce here is that of

“effective fitness,” f .4(£,t), which we define via the relation

.

N—-1
> k21 P'(CH,t)P'(CR ).

N-1 CiD¢

(15

P(&t+1)= feﬁ_(g’t) P(&t). (19

f(t)

We now break the sum over crossover points into those thagomparing with Eq(17) one finds

cut the schema itself and those that cut outside the schema.
In the reconstruction term if the cut is outside the schema, to

-1\ —
the right say, then the sum overR is 1. Similarly if the cut fe“(g’t):P(g)[l_ DC( N— 1”“5’0

is to the left, the sum ove(E:‘ is 1. The remaining sums yield

P’(¢,t) and this term cancels with an analogous expression +2 P(¢— &) wf_( 1)
L . . . . I g P gli
originating in the destruction term. For the reconstruction 2 (&,1)
contribution from cuts in the schema we denotey(7R) -1\ P
the bits to the leffright) of the crossover point that am®tin c(_) ﬁf_(t) P/ (& V)P (&ryb)
the schema and note thalc,P'(CH,t)P'(Cf.t) N—1] P(&t)
=3, %, P'(Cf ,H)P’(C,t). We will denote byé andég Pe _
the parts of the schema to the left and right of the crossover T N-1 2 P Hi

&
point, respectively. NowanP’(CiL,t)=P’(§L,t), where -

by definitionP" (£, ) =[ (& .)/f(t)IP(£..t), F(£,.t) be- o3 (FEDTPE DR D
ing the average fitness of the sche&ja Analogous expres- =1 P(&,t)

sions hold forég. With these results the final form of the
schema evolution equation including crossover is

(20

Thus we see that the effect of mutation and crossover is to
“renormalize” the “bare” fithessf(&,t). The destructive
effects of crossover and mutation give a multiplicative-type
renormalization while the reconstruction terms give an
additive-type renormalization. In the low “temperature”
—P'(&L.HP'(&R,D], (16)  limit where mutaton and crossover go to zero,
] ) ferf(&1)—T(&1). The above also leads to the idea of an effec-
where the sum is only over crossover points that cut the(ive selection coefficiens.;=f.(&/f()—1. If we think of
schema. Seit @S being approximately constant in the vicinity of time

f The mterprett_]atlon of this gquatlon ',S very sI|m|Iar tq thatto, thensg(ty) gives us the exponential rate of increase or
of Eq. (10)._|_nt e reconstruction term’ (£, P’ (ér.1) IS decrease of growth of the scheréiat timet,.
the probability that one parent is selected that contains the

left part of the schema and the other contains the right part.
A schema will be augmented by the effects of crossover if, as
in the string case, its constituent parts are selected more than
the whole. Compared with EG10) a further coarse graining A mentioned, one of the most important steps in obtain-
has been carried out by summing over all the states of bitg,q 5 qualitative and quantitative understanding of a system
outside of¢. Combining now the effects of selection, muta- is"geciding what are its relevant degrees of freedom. This is
tion, and crossover the schema evolution equation is often difficult owing to the fact that they are “scale” depen-
dent. In the case of evolution dynamics this implies that the
effective dynamics depends on the time scale considered.
Trying to understand such behavior quantitatively is very
(17) difficult as almost inevitably one will have to resort to an
approximation technique, which invariably depends on fo-
where cusing on the relevant EDOF, as in the methods of effective
- field theory. However, if they are time dependent then what
Pc , starts as a good approximation focusing on a certain type at
N—1 kzl [P"(&1) one time will usually break down as one approaches time
scales where they are qualitatively quite different.

One feature that is very common, if one has found a rea-
sonable set of EDOF, is that their mutual interactions are not
This evolution equation is the fundamental equation governvery strong, so that they have a certain degree of integrity.
ing the evolution of schemata and is written at a “semim-Calling something an EDOF is not a very useful thing to do
icroscopic” level, in that it is written in terms of individual if it is not readily identifiable as such. For instance, in low
schemata. It represents an exact coarse graining of the caenergy QCD, gluons and quarks are not very useful concepts,
responding string evolution equation after summing over allas they are so strongly coupled via highly nonlinear interac-
possible states of the nonschema degrees of freedom. tions that they form baryons and mesons, bound states of the

-1

PEH) =P (60— g 2 [P'(6D

IV. EFFECTIVE DEGREES OF FREEDOM
AND COARSE GRAINING

P(&t+ 1>=P<§)Pc<f,t)+§ P(&— P& ),

P(&)=P" (&)~

—P"(& P (&R.D]. (18)
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former. The latter have a much higher degree of integrityof reconstruction. Without reconstruction there is no other
than the former at such energies. fixed point other than zero. Thus reconstruction is the driving
So how is the above related to the present discussion dbrce of crossover and will always come to dominate. This is
GAs? GAs, as algorithmic representations of complex sysvery much contrary to the standard block hypothesis point of
tems, have many degrees of freedom and therefore an expeiew that treats schema destruction as the dominant effect.
nentially large number of possible states. For instance, in th&/e can also make another interesting observation associated
case where the state of a string of si¥eis defined as a with the effective fithess.4(&t) and crossover. Here the
binary word, for a populatiom the total number of possible effect of crossover is to renormalize the fitness. The effective
states is~(2MN)" in the case where strings are identifiable by selection coefficient is
a label other than the state of their bits, and2N in the case ) )
where permutations of identical strings are not counted sepa- ~  _ _ =1 N -1} P(i,00P(j,0)
rately. Ideally, the search for optima proceeds in a smaller eff =~ Pe N—1 Pe N—1 P(ij,t)
space, spanned by effective “coarse-grained” degrees of
freedom. The traditional answer to the question, “What isThus schema destruction gives a multiplicative renormaliza-
the nature of these degrees of freedom?” is, as mentioneon that contributes negatively to the effective fitness advan-
previously, given by the “building block hypothesis.” tage. However, schema reconstruction leads to an additive
We can get some idea of the dynamical behavior of scherenormalization of the effective fitness that exceeds the con-
mata due to crossover by restricting attention for the momerifibution of the destruction term if and j are negatively
to a flat fitness landscape. In this case, for an uncorrelategprrelated.
population, crossover is completely neutral and we have a In general the fitness landscape itself induces correlations
scale invariant situation. To solve the evolution equation inbetweené, and ¢g. In this case there is a competition be-
the case of a correlated population one needs to solve tHween the(anti-) correlating effect of the landscape and the
corresponding equations f@i and ég; these will involve — mixing effect of crossover. Selection itself more often than
reconstruction terms that contaip, , & r, érL, andégrg. not induces ananticorrelation between fit schema parts,
The first two are the components &f and the latter two of rather than a positive correlation. Indeed, in the neutral case
ér. Naturally this process can be iterated relating fineof a k=0 landscape whef, , of. >0, then I+ (2N,/
grained degrees of freedom to more and more coarse grainéd) 6f .<[1+ (2N, /N) of¢ J[1+(2Nr/N)6fs ]. So selec-
degrees of freedom, where more and more bis-(N2)  tion induces an anticorrelation; hence in an uncorrelated ini-
have been summed over. Obviously when one arrives at ongy| population, P’ (&,t)<P’ (& ,t)P’(&r,t). This means
schema the process stops as one cannot split by crossovfiit crossover plays an important role in allowing both parts
such schema. Thus crossover leads to a hierarchy of equaf a successful schema to appear in the same individual.
tions relating fine grained degrees of freedom to successively e can analyze this effect in more detail, taking once
more and more coarse grained degrees of freedom. again the case of 2 schemata. Defining the correlation

Restricting attention to two schemata in the flat fitnessc(jj ty=[P(ij,t)/P(i,t)P(j,t)]~ 1, then in terms of the se-
landscape setting and considering the continuous time Iimitiection coefficients,=f(£,t)/f—1, one finds

one arrives at the following differential equation:

(29)

dP(ij, [—1 (. 1
EJII: : = Pey—g [PULD=PAOPGO] (2D e (1 PeN—1/lTrs)(i+s) ey
_ (sisjtsits)

wherei andj are the definite bits that define the 2 schema
and also the two 1 schemata, respectively. As one cannot
split a one schem®(i,t) andP(j,t) are conserved quanti-
ties; thus one finds

. (25

(1+Si)(1+sl')

Note that the effect of crossover is to diminish correlations
induced by the fitness landscape; however, crossover cannot

P(ij,t)=P(ij,00e PLI-IN-Dltt p(j 0)pP(j,0) change the sign of the correlations. The larger the valde of
in this simple case the more the correlations are damped.
X (1—e Pl =D/N=D]ty (22)  This is the effect that we saw previously in the context of a

flat landscape. In the extreme cdseN, p.=1 the effect of
Thus one sees th&(ij,t) approaches an uncorrelated fixed crossover is to eliminate all correlation betwdeandj. In
point P*(ij)=P(i,0)P(j,0) exponentially rapidly. The sole the neutral k=0) cases;j=s;+s; and
effect of the size of the schema is to govern the rate of
approach to the fixed point, an exponentially small prefer- N (I-1)\( (1+si+s)
ence being given to smaller schemata. C(ij ,t+1)=(1—pc N_1 )((1+s-)(1+s-)
The steady state solution for a schegaf orderN, is ' !

Cij.b)

N, (sisjt+sit+s;)

P (=11 P&.0, (23 S (I+s)(1+s)

Thus the effect of crossover is to weaken but not cancel
whereP(&(i),0) is the probability of finding the one schema completely the anticorrelations induced k¥ 0 selection. In
corresponding to théth bit of £ att=0. One can verify that the remainder of this section we will consider this effect for
this steady state solution also is purely a result of the effectgeneral schemata.

. (26)
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In our search for the relevant EDOF and in analyzing the 1 '
building block hypothesis we will now consider schemata of (AN =5r=> > D PEDAK). (29
lengthl, irrespective of their order or their overall position in N2=2 {Nz} words
a string. This is a further coarse graining relative to the evo-
lution equations considered earlier. The evolution equation

(17) by itself is not very useful for analyzing schemata of BY “9eneric” we mean that within the class of landscapes

size|, as any given string contains schemata of all sizes!V® @re considering, such as &tk model for a particular

However, consideration of just about any quantity in con-value ofk, there is no systematic bias in the fitness function
junction with Eq.(17) and a sum over schemata of a givenfor a particular part of the string, i.e., the sums over words,

length is meaningful. Our notation here is that for any func-configurations, and\; lead to an average that is effectively
tion A(£,1) translation invariant (the system is effectively self-

averaging. We will also use the notatiof{A)), to represent

(N-141) 1 the average over schemata and over crossover points,

namely,((A));=1/(1— 1)Z{Z(A), .
;1 N;2 {NEZ} Wéds P(&DAED Considering the expectation value of the in-schema fit-
(A(t))1= (N=1+1)2"2 (27 ness, the equation that gives the improvemer(iség), from

generationt to generatiort+1 is

where|=2. The first sum is over the possible beginning
pointi of the schema and the following two sums represent Sfe( €,1)
the different configurations of any numbis<I|—2 speci- A= << fe T>> : (30)
fied bits chosen among the- 2 available sites. The number !

of available sites i$—2 because we fix the ends bits.

Using Eq.(17) one may derive a recursion relation for the
expectation value of; however, time dependence enters not
only in the changing probability distributiofP(¢,t+1),
which can be substituted using Ed.7), but also inA(¢,t
+1). This occurs even though many observables of interest <

=

where 5feﬁ(§,t)=feﬁ(§,t)—f_(t). More explicitly, using the

evolution equation for schemata, one finds
are time-independent functions of the string states as the "_1 of; [P/(£1)
summing over degrees of freedom associated with passing to N—1 P(&1) '
a more coarse grained description induces an implicit time
dependence in the coarse grained observables. For example,
f(£,1) is a population-dependent observable, even though —P'(fL,t)P'(§R,t)]>> : (31
f(C;) is not. To simplify matters, to search for structure in [
the population we define a time-independent function on
schemata: the average selective advantage that in-schema — _ _
bits would enjoy if the schema were immersed in a randomwhere 6f (¢,t) =f(&,t) — f(t). The first term is independent
population, of | in a random population if the fitness landscape itself is
independent.
oN-N, As defined,A; measures the average improvement of the
st :(ﬁ)( 1 ) s (fem—1) 28) in-schema fitness over one step of evolution. How does this
EIN, 2NN ) 4 e M z) improvement come about? First of all, schemata with
of (&,1)>0 will be more frequent in the parent population,

where 7 represents the out-of-schema bits and the averag@an—kS to the selection factor ), where_ S_
fitness in a random population has been normalized to 1/2= 6T(&,1)/T(t)=(2N2/N) 6., where the latter equality is
Note that here and in the rest of the paper we are looking &Ny true for a random initial population =0 model. The

the fitness deviation per schema bit as opposed to Sec. [Inext step is to consider the action of the crossover operator.
where the total fitness of a schema was being considere@®" the other hand, selected parents witnay not pass it on
This observable corresponds to théfective fitnesof in- (O their offspring if crossover “breaks” the schema. How-
schema bits if the populatiois in fact random, or if the €Ver, there is a possibility thatwill be r_econstructeq fro_m
landscape assigns an independent fitness contribution to eaBfrents that have parts gfout not all of it. The question is,

bit in the chromosomek=0 in the terminology of the which is larger for a particular value b? Before we turn to
KauffmanNk-mode). In general, it is a useful test function &nSwering this question in particular cases, let us consider
with which one can probe for the emergence of structurdhe relation between, and the spatial correlation function.
during the first steps of evolution away from a random initial | the population is uncorrelated; in other words, if
population. We will refer to this observable below as theP(&:t)=ILiP(¢; ), where§; is theith bit of & then the
in-schema fitness expectation value oféf, is independent ofl, as N,of,

We will make use below of the following simplified av- = 2if¢ and(Z;éf), is just the uncorrelated sum of con-
erages: ifA(&) is independent of the initial defining point of tributions from 1 schemata. The fact that the existence of
the schema, or if the landscape is “generic,” then we carcorrelations inP(¢,t+1) implies anl dependence can be
sum over this point to find demonstrated explicitly. One writes

5f§5f_(§,t)>_
T
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N V. ASYMPTOTIC SOLUTIONS

1 1
fer( &)~ N, .Zl fa(&)+ No(N,—1) In this section we consider some asymptotic solutions of

N the evolution equation fod, derived in Sec. IV. In particu-
9 1 lar, we will consider two limiting cases: the evolution of
X Z Z {f2(&i&)) —2[f(&) +F2(€), schemata starting from a completely random initial state, and
a random perturbation around a completely ordered state. As
(32)  one of our principal considerations is in investigating the
validity of the building block hypothesis, we will set the
mutation rate to zero, as the effects of the latter do not de-
1 pend on schema size. We will derive expressions for
= A(t+1) andA(t+2) starting out from an initial random
1(6)= 51 2, feni&id), 33 population at timet.
For a random initial population at timg

1
e =52 2 falad. G4 M(t+2)=( ST (t+2)) —A(t+1).  (39)

#i,j}

where

Even thoughsf, is time independent, we use the above no-
and we are considering only up to two-point correlations tation to indicate that its expectation value is with respect to
Defining ds.= 6f (1) — of ¢, which is a measure of the se- the probability distribution at time+ 2. In the initial random
lective advantage over and above the in-schema fitness, op@pulation the effective schema fitness is the in-schema fit-

finds ness 8f, and 8f(&t)=(No/N)8f,, P(&1)=1/22 Thus
one finds
1 N Np
5s§~—2§1f1(a)+N(N T2 2 &) N P -1
1 (D) ={ 1=pc| =1 | €adi+pe| =1
— [ f,(&) +F1(€) ] —F(t)— oF ;. 35
L1260+ Fa(£)T (1) - of, (35 ><<<NL N NN >>
For ak=0 landscape, N A N> Prt 2 AR
N (40
~ _1 : .
S NI TR N2(N2 2 & {fa(&&)—2[F2(&) +F1(EL where we have introduced the notation for the quadratic
(36) terms
So, in this case we see that the existence of a selective ad-  _ i 2 _ 1 <2
. : © oh . = E f§ BL=or > S o,
vantage is due to the existence of correlations in the effective 2Nz < 272 yioras N L
fithess. Defining a selective coefficiegtthat represents the (41
selective advantage for a schema to be of jzene finds ) )
with an analogous expression k.
A|:«5f§>>|(1+si), (37) We will now derive explicit results in some concrete
cases based on generic fitness landscapes. The Kaultan
where models provide such a set of landscapes. Here we will spe-
cialize to the cas&=0, which is neutral in the sense that it
(5288, ) neither favors nor disfavors correlations between bits. In the
s|=§—2 (38 k=0 landscape,
(ofeh
L NR
In this expression fon\;, (5%)) is independent of for a 5f§:N_2 of g + N, of g (42)

random initial population. Thus we see that anglepen-
dence can be attributed to the existence of spatial correlaa/e also have thaf 5f§5f§ 5f§ % =0, which results in the

t'onSth ruction term f ds the geSomplete cancellation of the destruction and reconstruction
e reconstruction term from crossover exceeds the degyoceover terms, the final result being

struction term for somé, one can conclude that the fitness
improvement attributed to a particular bit in the string de- A(t+1)={a),. (43)
pends on its being part of selected schemata of this size. That

the conditioning information on the existence of other speci- The above expression is for an arbitrds O landscape.
fied bits should be useful, is a direct consequence of th&o find a more explicit solution we must consider a more
correlations between the different bits in the string. We em-explicit landscape. We will consider two: a binary landscape
phasize the relation betweey) and the correlation function where the fitness of a bit may only take two values, 1 and 0;
because correlations are intimately linked to the emergencand a landscape where the fithess of a bit is selected uni-
of EDOF. In this sense, the functiofy, is related to the formly at random from the intervdl0,1]. Both landscapes
expected size distribution of the EDOF. conform with the requirement that the average fitness per bit
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in a random population be 1/2. L&t denote the deviation 1 /2k\?2 )
from the mean fitness of bit numbgri.e.,x;=f;—1/2. The Be=5k | ¥ Li%rds ofi. (48)

averaging over configurations then gives, fer3,

N

In Eq. (48) the sum is over words associated with bits to the
left of the crossover point given that all the scheglées to

the right of the crossover point. The expressionggy_y is
analogous, but with the sum over words being associated
with bits to the right of the crossover point, given that the
schema lies to the left. Equatid@d?) is associated with a
sum over words for the bits to the left of the crossover point
but excluding bits that are in the schema. Likewise the ex-
pressionSn-k-ng contains a sum over words associated

with bits that are out of the schema to the right of the cross-
over point. Finally, as=1+ (2N, /N)a+[2(N
- N2)/N]a(N,N2) .

If one considerst, and £g as schemata on exactly the
wherec=3 for the binary landscape and 1 in the randomsame footing ag, then the expressions f&' (&, ,t+1) and
landscape. In the latter for largé we have assumed that the P’(ég.,t+1) are completely analogous to those above, ex-
average over thdl bits (weighted byn;) can be replaced by cept that one is now considering the bitsépfandéy that lie
an average over the distribution ®f used to generate the to the left and the right of the crossover point. Combining
landscape. Thus one sees that crossover acts in a scale these expressions with Eq615)—(48), after some lengthy
variant way at the first time step of evolution from a randombut straightforward calculations one finds
initial population: there is no preference whatsoever for
small blocks at the expense of large blocks.

We will now consider what happens at tinhe-2. The
extra ingredient we need relative to the above calculation is
(o (t+2)),. To calculate this we in turn need to calculate
P'(¢t+1), P'(& ,t+1), andP’(ég,t+1), i.e., the selec-

(=== ni—2) & ™
where
m=I(1-1)(1-2) (I<SisSN-I+1),
mi=(|2—3l)+i(|2—5|+8)+I{éi (i<,

and symmetrically foi >N—1. Explicitly,

(ah=gr- (44

Pc
(Mt Tzaom=1)

1-2aq
1+2aq

tion probabilities at time + 1, calculation of which requires

knowledge off(¢,t+1), f(é ,t+1) f(ég,t+1), andf(t

+1). Specializing once again toke= 0 landscape, one finds

, 1 2N, \?
P(f,t'i‘l):m 1+T5f§

(N_Nz) Pc

I-1
2N 4N N

N & N?

-1
4p.
+ N(N—1) [kzl (NR5f§RB(k—NL)

X[ 2 Bt > ﬂ(N—k))H' (45)
k<¢ k>¢
where
1 2(N-Np) _,
F(N-Np) ™ 5N=N, n—words N oy “9
1 [2(k—Np)\? )
Bk-N)= SK=NL ( N nL_Ewords oty (47

2N
X <<N_ (BrB+ ﬂLB(Nk))>>
2 [

2p
T 2a9(N-1)

X<a2 Brta ,B(Nk)> :
k<& k> ¢ |

(49

The first term on the right-hand side of E49) is the result

of the effect of selection at+1 on the population that was
the result of selection at It is crossover independent. The
last two terms are associated with the effects of selection on
the population at time+1, which has incorporated non-
trivial contributions from crossover at time More pre-
cisely, the picture is the followingk=0 selection on a ran-
dom population induces anticorrelations B (&, ,ér,t)
when both 5f & and &f & AT positive due to the quadratic

term ~ of §R5f x Crossover reduces these anticorrelations,

thereby enhancing thehole schemaé= &, + &g relative to
its parts. Selection dt+ 1 reinforces this effect of crossover
to enhanceé¢, leading to the net positive contribution to
As above, we will consider the binary landscape and a
landscape where the fitness of a bit is selected uniformly at
random from the interval0,1]. Similar calculations to the
ones given above fof ), lead to the final expression for
A(t+2),
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FIG. 1. Multiplicative renormalization of the effective fitness due to crossover,g), is represented as a function of the schema length
|. The crossover term gives a positive contribution to fithess growth for all valuesdfich is greater for schema sizes that are either much
smaller or much larger than half the chromosome size.

3N—c\| ¢ Since of;6f;>0, P'(ij,t)<P’(i,t)P’(j,t): selection in-
A(t+2)= 3N+c/ 6N duces an anticorrelation between the defects. Crossover en-
hancesP(ij,t+1) to bring it closer toP(i,t+1)P(j,t
2N2—NI+12+N+1-8—(8/2) +1). Since the schemaj() is more strongly damped than
*Pc 1443N+Cc)N3 (N—1) : or j separately, the selection at the next time step will de-

stroy more defects than without crossover. So here again, as

(50 near the random limit, crossover has a beneficial effect due

to the enhancement of the whole schema relative to its parts.

From this expression one can readily see that the effects @fear the random limit this was beneficial because the whole
crossover are always positive, i.e., the effects of schema reschema was picked up by selection; here it is beneficial be-
construction outweigh those of schema destruction. A grapBause the whole schema is more strongly damped by nega-

of A|(t+2) versud can be seen in Fig. 1. tive selection, so defects die out more rapidly.
We now turn our attention briefly to the limiting case of

an almost organized population. In this limit, one can con- VI. EFFECTIVE DEGREES OF FREEDOM

sider that the strings differ from the population consensus at IN THE N, LANDSCAPE

most at one site; we will refer to the differing site as a “de-

fect.” There areN possible defects, each with an effective ~ The k=0 landscape discussed in the preceding section
negative fitness differential over the consensus string. ThBas the virtue of being “neutral” from the point of view of
evolution equation implies in this case that the effect ofthe block hypothesis; however, it is not a realistic example of
crossover is strictly neutral: there is no net creation or delandscapes usually encountered in complex optimization
struction of defects by pure crossover without selection. S¢roblems; we will therefore turn our attention to the case

in this limit A, is once again strictly independent bf The =2 (for a description of the Kaufmann model, sg#]).
possibility of multiple defects in a single string raises theThere are two mechanisms by which connected landscapes
possibility of correlations in the distribution of defects along can induce correlations. On the other hand, schemata that
the string, which would induce mirroring correlations in the contain landscape-related bits have a sharper selective coef-
schemata, sa, may acquire a nontrividl dependence as a ficient because there are fewer unspecified bits involved in
second order effect in the mean density of defects, which igheir fitness contribution. On the other hand, the balance be-
the perturbative expansion parameter near the ordered limitween the schema destruction and reconstruction terms from

Taking once again thke=0 landscape, the fithess penalty crossover is broken to first order.
per bit for two defects is given by &;; = f;+ 5f;, so that Let us first restrict our attention to schemata of two defi-

nite bits (N,=2). There are three possible situations for a 2
S-St schema. Either th_e two bits are not connected by the fithess
P'(ij, ) =P (i,t)P'(j t)~ — ——. landscape, one bit is the connected partner of the other, or
f2N?2 the bits are connected both ways. This last situation is im-
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probable folN>1, so we will focus on the first two cases. If  If the two bits are not related by a landscape connection
one has two unrelated bits in an otherwise random initiathe effective fitness of any one of these bits in a random
population, the effective fithess of each bit in this schema igpopulation is given by the average of four random numbers
equal to an average of four of the eight random numbers ifirom the fitness table, where the averaging is over the values
the fitness table at that site, because one of the three bits @& the two connected partners that determine the fitness con-
fixed and the other two are picked at random. If, on the othetribution of this bit. Thus, the best schema can be expected to
hand, one of the bits is connected to the other, then its fitnessave a selective advantags = (f¢/f )—1=(4/IN)(0.567
contribution is given by averaging over the two possible val-—0.5). Now, if there is a landscape connection between the
ues that the other connected partner can take. This is ao bits of the schema, the contribution of one of these bits
average of two out of the eight random numbers in the fitnesg the string fitness is given by an average of two random
table. The key point is that the average of two random numnumbers, since we only need to average over the other con-
bers typically differs from 1/2 more than the average of four.nected partner that is not in the schema. The best schema in
Therefore, schemata that include landscape-related bits withis case will have a selective advantagye= (4/N)[ (0.567
have a stronger selective coefficient, in absolute value. This-0.73)/2)-0.5].
leads to a bias for the condensation of schemata that recog- |n the caseN=40 analyzed in the preceding section, the
nize the structure of the fitness landscape. ratio of the growth ratesfoa 2 schema that recognizes a
In order to make this argument more precise, we need t@andscape connection to that of one that does not=i§(1
compute the expectation value of the bestrafaverages of  +s,)/(1+5,)]=1.0081. This result should be compared to
m, random numbers, where each random number is unithe effect of crossover, which we computed in k0 land-
formly distributed in the unit interval. The probablllty distri- scape at the second time Step{_g{ was found to fluctuate
bution of the best o, averages ofm, random numbers is petween 1.0025 at=N/2 and 1.0029 al=2, |=N—1.
equal to the derivative of the probability thats larger than  Clearly, the conclusion is that landscape correlations should
all m; averages. If we calP(xy,... Xp,) the distribution of  pe taken into account in a proper analysis of the condensa-
the averages, the probability thais greater than all of the tion of “schemata.”
averages is In our discussion we neglected the possible existence of
frustration and assumed that the fitness contribution of the
1 1 two bits of the schema could be optimized independently
P(z>supm;))= fo Xm"'L A%, P(Xy, -+ Xm,) without affecting the mean fitness contribution of the other
bits in the string. A more careful analysis including frustra-
M tion would be much more complicated; however, one expects
Xiljl 0(z—Xx;). (5D that at least for smal,, frustration should be marginal and
that our conclusions should hold qualitatively. Of course,
Since them, averages are statistically independent in thisthere are fewer 2 schemata that recognize a landscape con-
case, this expression reduces to nection than not, so thg overall cont(lbut!on of such sche-
mata to the condensation of EDOF is diluted by a phase
1 m space factor N, relative to 2 schemata of landscape-related
fo dx P(x) 9(Z—X)) : (52)  bpits. Thus, one expects that the first stage of divergence from
a random population will be dominated by schemata that do
not “understand” the fitness landscape. The landscape-
related schemata, which grow at a faster rate, will eventually
overcome the contrary phase space factor and become more
<Zma><>:f zp'(z)dz. (53)  important in the condensation process.
Returning to the fundamental equatidr®) for the growth
For our purposes it is sufficient to consider the case®f in-schema fitness, we can evaluate the effect of crossover
wherem,, m,e{2,4. Form,=2 the distribution of the av- N @k=2 landscape by calculating, in the first step away
erage of two uniformly distributed random numbers is givenfrom a random population:
by P(x)=4x for x<1/2 and the symmetry conditioR(1/2 4 (n) 4
+x) =P(1/2—x). The expectation values for the bestof, Af\‘”)=2=<— 5f2> AP (1—1)™
such averages are, fan, =2, m,=2, (2,,,)=0.6167; while 2 N~ ¢ N(N—1)
for my=4, m,=2, (2,,,0=0.7300. Form,=4 (averages of

four uniformly distributed variablésone has ><< 5f§( Sf ¢— % 8¢ — %
2 2

p(z)=

The expectation value of the best of tihrg averages is

S,

>(n)

where we have used the identity, valid in a random popula-
P(X)=128x3-2 for l<x<l, (55 tion, ety 8f 5F,=0, and the average)™ runs over

the set of all schemata witiN,=2 definite bits withn
and the symmetry condition given above. One finds the fol=0,1,2 landscape connections between schema bits. We are
lowing result: form;=2, m,=4,(z,,.,0=0.5673. Finally, the also assuming that there is not explicidependence in the
expectation value of the best ofi; uniformly distributed fithess landscape itself.
random variables i$z,,0=m /(M +1). Here we will need The evaluation ofsf, depends on the number of in-
only the best of eight, which is equal to 8/9.8889. schema connections. One must evaluate the contribution of

P(x)=18x3 for x<3, (54)
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each of the two bits in the schema. If there are no in-schemthe system, which is a function of the mutation rate. For a
connections, then the averaging over unspecified bits leads figh mutation rate one expects the gene pool to be highly
a contribution tosf ; equal to the average of four of the eight disordered and EDOF are mostly single bits0) or trun-
random numbers in the fitness table. If one of the bits iscated fitness trees with small values rof As the rate de-
connected to the other, then in evaluating its fithess contricreases, larger trees can condense and the dominant value of
bution one has only one unspecified bit and the contributio increases. This leads us to propose the following conjec-
to &f, turns out to be the average of two of the eight randonfure on the nature of the EDOF, which we shall call the
numbers. The values off, and 5f, are always given by fitness tree hypothesis.

: Hypothesis.The EDOF of genetic algorithms withNk
the average of four random numbers. Thus, if there are NBtness landscapes are the truncated ordf#iness trees. The
in-schema connections§f§=(N,_/N2)6f§L+(NR/NZ) 5ng

effective value ofn increases as the condensation process

and the contribution of the crossover term vanishes as in thgllows for an increasingly structured gene pool.

k=0 case. If we denote by? the variance of the random In order to test this hypothesis we designed a numerical

number distribution used to generate the tables of eight posimulation with a population of 1000 individuals in ak

sible fitness contributions for each bit, the averaging ovetandscape, wittiN=40 andk=2. The crossover probability

schemata witm=0 landscape connections gives was taken to be equal to 1. The spatial correlation function
measures the correlation of bits at distadcglong the string
and tests the block hypothesis directly. A second correlation

4 0 52 function measures this correlation as a function of the con-
A;,°;_2=<N 5f§>

“ON” nective distance between bits, defined as the smallest number
of landscape connections from one bit to the other. The re-
) ) ) . sults are shown ifiFigs. 2a)—2(c)]. At generation 15Fig.
On the other hand, if there is one in-schema connection, thepa)] the spatial correlation function reflects the preference
(8t2)©) is the variance of the average of two random num-for small schemata, as suggested by the block hypothesis.
bers plus the variance of an average of four, while one of théfter 100 generationfFig. 2(b)] the spatial correlation func-
terms(8f :5f ¢ )(©) or (5f 5t )©) is equal to half the vari- tion has become weak and roughly independent of the dis-
ance of two random numbers, the other being the variance (i?nce; on the other hand, the correlation of landscape-related
an average of four. Using —1)=(N+1)/3, one finds its becomes S|gn|f|cant_ at connective d|st§1n(;(_a 1. By genera-
tion number 150 one finds statistically significant correla-
tions up to connective distance 4, which are progressively
o2 reinforced. In Fig. &) we show the correlation functions at

3 pc(N+1) _ h ; , :
generation 200. Since the mutation rate is equal to zero in

(1) _(Z_ =
AN,-2 (4 12(N-1)

N ) . _mutauon
these simulations, population diversity eventually decreases
o 0 1 p(N+1) and becomes insufficient to derive statistically relevant cor-
=AN2=2+AN2:2 2 B(N-1) ) relation coefficients. At generation 350 the strings are totally

condensed up to connective distancéte first two correla-
o ) _ tion coefficients are equal to;lthe gene pool is completely
Similarly, for n=2 in-schema connections, organized at the 500th generation.

Throughout this article, with the exception of the numeri-
cal experiments, finite-size effects were neglected. If one
considers their contribution, the failure of the block hypoth-
esis only becomes more apparent. Here we will mention only
briefly two arguments to this effect. In a finite population the
In these expressions, the.-independent correction is the difficulty of findinga good schema must be considered, since

result of the selective advantage of schemata that recogniZ}t @ll schemata are present in the initial population. Since
landscape connections, which we discussed previousl)ﬁh‘g number of schemata with fixed, grows with | as
These numbers appear somewhat magnified relative. to = CN,~2, ON€ €xpects it to be easier to discover good large
This is only because here we are examining the in-schemgchemata than small ones. Another important finite-size ef-
fitness per bit, whereaswas associated with the growth rate fect is the effective nonlinearity of selection emphasized in
of the entire string. The crossover contribution reduces thighe neutral theory of molecular evoluti¢8]: Schemata with
correlating effect of the landscape but only by a factor of 2/30nly weak selective coefficients are not necessarily selected,
in the limit p.—1, N—o. In conclusion, schemata that re- as the neutral drift due to fluctuations in the selection of
flect the landscape connections contribute mger bij to  parents dominates over selection unlggg|>1/P, P being
the growth of fitness than schemata involving unrelated bitsthe effective breeding population. This leads to an effective
A similar conclusion can be expected to hold if one con-nonlinearity of selection due to the existence of a threshold
siders larger schemata with,>2. Extending the argument in favor of schemata with a selective coefficient above this
to general schemata, one is led to consiiteess treesthe  value. Since the selective coefficient of a schema grows in
fitness tree of a bit is the set that consists of the bit itself, itgoroportion toN,, this effect favors schemata with largys .
connected partners, the connected partners of the these cdaombining this result with the previous comment on the
nected partners, and so on. We can define an ardenn- ~ probability of finding good schemata being proportional to
cated fitness tree by truncating this procedure afteteps. ' -Cn,-2, We find that schemata with small valuesl adre
The dominant value ofi depends on the degree of order in strongly disfavored by the finite-size effects.

pc(N+1)
- 3(N-1)

2 0 _A(O
MM a1
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0.2 - " : : l - . selection, mutation, and crossover. We found that this equa-
c) tion could be elegantly expressed in terms of the evolution of
a stringC; and its constituent parts. This naturally introduced
the notion of a coarse graining relative to a description in
terms of the strings themselves, the coarse graining being
associated with sums overs strings that contained a part of
C;. Subsequently we derived an analogous equation for the
evolution of schemata, this time in terms of a schema and its
constituent parts. Schema evolution is coarse grained relative
to string evolution because of the summing over kheN,
nonschema bits. The evolution of a schemagN,) is de-
0 : . i . . , , scribed in terms of its constituent parts, which are schemata
1 2 3 4 5 6 7 8 9 of order less thaiN,. Thus the action of crossover invokes a
@) r natural hierarchy of coarse grainings. Such a hierarchy is
0.2 . . . s . . . reminiscent of a renormalization group transformation,
where there is a coarse graining over a subset of degrees of
freedom, such as in the one-dimensional Ising model, where
0.15 4 s one may sum over every other spin in the partition function,
) C for instance. In the GA case this coarse graining stops natu-
rally when one arrives at the evolution of 1 schemata.
0.1 1 B In one sense it is remarkable that one may solve analyti-
cally a GA, albeit for a simple fitness landscape and over a
short time interval; however, what is lacking is a reasonable
approximation scheme with which one may attack the evo-
B lution equations. Just as solving an exact renormalization
group equation is almost impossible, so with GAs finding
1 > 3 4 5 6 7 8 9 exact solutions is probably hopeless. However, implement-
(b) r ing renormalization group transformations approximately has
been remarkably successful in explaining many physical
phenomena. We hope that finding analogous techniques in
C) the study of GAs might lead to similar success.
03 R ¢ £ =200 L Starting from t_he evolution equation fqr schemata, a fu_r-
ther coarse graining was performed to arrive at an expression
for the average contribution of all schemata of dize the
0.2 - improvement of fitness. Applying this equation to the par-
ticular case of &=0 landscape, where each bit contributes
independently to fithess, we showed that the net effect of

0.1

0.05

C(r)

0.05 + L

0.4 1 ! | 1 1 ! 1

0.1 1 > crossover on fitness growth is slightly positive for lalithe
B effect of schema reconstruction always exceeds that of de-
struction. Schemata that are either much smaller or much
0 ) 205 4 e & 7 & s larger than half the string size are most enhanced. A different
() r situation arises if one considerska>0 landscape. In this

_ o case the sum of the effective selective advantages of the parts

FIG. 2. Average absolute correlations between bits in the chropf 3 schema is not necessarily equal to the effective selective
mosome are given in terms oBJ the linear distance that separates advantage of the entire schema. Only when the parts of a
the bits on the chromosome, an@)(the connective distance de- ggjacted schema are less selected than the whwedecep-
fined as the smallest number of landscape connections to go fro%/e case, does crossover lead to a net destructive force as
one bit to the other. Very early on one notes a slight preference fogchematf;l are broken down into pieces that are then lost due
correlations between bits that are near each other on the chrom?c-) their low selectivity. The schemata that are selected over a

i.e., withl<N (a). By t=100 th lati bet . ' )

some, 1.6 i | @. By t= e correiatons berween long time scale are those that break down into useful parts,
landscape-related bits become importébt, and they come to independently of their size

dominate at=200 (c). At this point the population is highly orga- o .

nized and correlations on the basis of linear chromosome distance F|n|te.-S|ze effects break the apparent Symmgtry of the

are no longer significant. geometrlca! effect of crossover ab_dut N/_2: The existence

of a selection threshold favors highly fit schemata with a

large number of specified bitd,, and these can be found

with a reasonable probability only if their lengthis large.
The bulk of this paper has been devoted to deriving equacombining this argument with thé dependence of in-

tions that describe the evolution of string populations inschema fitness growthy,, one concludes that the effective

GAs, and in particular how EDOF may emerge during thisdegrees of freedom will be schemata with lafge and |

evolution. We started with an equation that governed the>N/2.

evolution of the strings themselves under the joint action of This conclusion has important and surprising conse-

VII. CONCLUSIONS



3264 C. R. STEPHENS AND H. WAELBROECK 57

guences for the designer of GAs. It is often thought that GAa condensation process in a rugged landscape, guided by the
designers should strive to find a coding such that bits thatmergence of overlaps with certain structures or “patterns.”
“‘cooperate” are placed near each other on the chromosomé&)ne of the chief reasons why in GAs the overlaps with sche-
SO as to resist the destructive effect of crossover. This isnata are considered rather than with entire strifs=N
generally speaking a very difficult task, since the structure oschematgis that genetic populations are generally too disor-
the optimization problem usually does not match the lineadered for such a rigid structure as a completely specified
topology of the strings. Our results show that this task isstring to be of much relevance. Of course the same can be
pointless: if anything, one should try to place cooperatingsaid of spin glasses far from equilibrium. This suggests that
bits as far from each other as possible. Of course this is ththe notion of “schema’” may find some usage in the study of
most probable outcome if no attention is placed on the lineathe condensation of spin glasses from an initial disordered
disposition of the bits, so this is not a problem one shouldohase. One can carry the analogy between GAs and spin
worry about. glasses one step further and suggest that, in the case of
We should stress that the above comment by no means insparsely connected neural networks, the truncated connective
plies that the choice of coding is irrelevant. The choice of atrees may form a privileged class of schemata for the purpose
genetic interpreter is crucial to generate a high density obf developing an effective theory of neural dynamics.

states near desired fithess extrema and perhaps also to guide
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